Foundations and Challenges of Multi-Fault Program Repair

OMAR I. AL-BATAINEH, Gran Sasso Science Institute, Italy

Automated Program Repair (APR) has achieved notable success in single-fault scenarios, yet real-world software often contains multiple
interacting faults whose behavior fundamentally changes the repair challenge. This paper establishes the first formal foundations for
multi-fault APR, treating it as a distinct research domain rather than a simple extension of the single-fault case. We introduce precise
models of fault interaction, formalize principles for partial and composite patch validation, and identify intrinsic theoretical limits
that define what multi-fault repair can and cannot achieve. Building on this foundation, we identify several pressing challenges for
the field, including disentangling faults, designing interaction-aware oracles, developing reliable benchmarks, and defining sound
evaluation criteria. To address these issues, we put forward the concept of orchestrated repair, where patch synthesis, validation, and
analysis are guided by a central orchestrator that manages dependencies and brings together diverse tools. This reframing treats
multi-fault APR as a coordinated, structured process and provides a concrete perspective for future work, helping researchers develop

approaches that can handle the complexity of real-world software.

ACM Reference Format:
Omar I. Al-Bataineh. 2025. Foundations and Challenges of Multi-Fault Program Repair. 1, 1 (October 2025), 43 pages. https://doi.org/

10.1145/nnnnnnn.nnnnnnn

1 Introduction

Automated Program Repair (APR) has achieved notable success in single-fault settings [16, 27], yet real-world software
systems seldom contain only one defect. Multiple interacting faults are common, and their presence changes the nature
of the repair problem in fundamental ways. Moving from single- to multi-fault APR is not a straightforward extension; it
raises challenges that strike at the core of current repair approaches. Beyond practical difficulties, multi-fault scenarios
reveal limitations in existing validation and synthesis methods, showing the need for frameworks that account for fault
interactions rather than treating defects in isolation.

Despite more than a decade of work on APR, the field still lacks rigorous formal underpinnings, particularly for
the multi-fault setting. While extensive empirical studies exist [25, 28-30, 32], the absence of precise models for repair
spaces, fault interactions, and patch composability leaves key questions unresolved. This paper lays a formal foundation
for multi-fault APR, providing a theoretical framework to analyze, reason about, and guide future research in APR.

Building on this foundation, we outline a research direction centered on collaborative, orchestrated repair. This
approach integrates dynamic input generation to expose fault interactions, formal reasoning tools to verify partial
and composite fixes, and repair engines coordinated by a central orchestrator. Rather than converging on a single
patch, such a system adapts, evaluates, and refines candidate solutions in response to emerging behaviors. By treating
multi-fault APR as a structured, iterative process of coordination and feedback, this vision aims to develop repair

systems that are resilient and capable of addressing the intricate interplay of multiple defects in real-world software.

Author’s Contact Information: Omar I. Al-Bataineh, omar.albataineh@gssi.it, Gran Sasso Science Institute, L’Aquila, Italy.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Omar I. Al-Bataineh

1.1 Motivation for Multi-Fault APR

Multi-fault APR is an emerging and important area of research for several compelling reasons that justify treating it as
a distinct problem space. First, multi-fault APR represents the general case of program repair. Single-fault APR, which
has dominated the research landscape for over a decade, is a special case where the set of faults F contains exactly one
element (|F| = 1). By addressing the general case, we aim to improve the robustness, effectiveness, and applicability of
APR systems to the complexity of real-world software, where multiple co-occurring faults are common.

Second, while the APR community has largely overlooked the multi-fault setting, significant research exists on
multi-fault localization [7, 17, 23, 41]. Tools and techniques such as CFaults [36], FLITSR [7], MSeer [15], and other
related approaches have demonstrated that diagnosing multiple faults is both feasible and necessary [4]. Despite these
advances, a critical gap remains: existing methods focus primarily on detection and localization, offering little guidance
on how to repair multiple faults once identified. In other words, while we can locate where defects occur, we lack
principled strategies to generate correct, coherent patches that account for their interactions. Our work addresses this
gap by introducing a formal framework for multi-fault repair that complements and builds upon existing localization
techniques, offering a structured pathway from fault identification to comprehensive, interaction-aware repair.

Third, addressing multiple faults together opens a promising path to reducing the risk of overfitting patches. Recent
studies reveal a strong link between the operational strategies of current APR tools and the tendency to produce
overfitting patches [4, 5]. These tools generally focus on finding the smallest change that makes a given test suite pass,
which can result in brittle repairs that do not generalize well. By contrast, a strategy that considers all interacting faults
systematically encourages a more comprehensive solution, yielding patches that are more robust and semantically
sound by addressing multiple issues and accounting for a wider variety of program states and behaviors.

Finally, from a practical perspective, repairing multiple faults aligns with the realities of software development. Bug
reports often point to several intertwined issues rather than a single isolated fault, and developers typically address
these as part of a broader problem rather than in isolation. By focusing on programs with multiple interacting faults,

our work aims to bring APR closer to the actual practices and needs of the software engineering lifecycle.

1.2 Why Multi-Fault Program Repair Remains Understudied

Despite progress in APR, the field remains largely anchored to the single-fault paradigm. This is not because repairing
multi-fault programs is inherently impractical, but due to a combination of implicit assumptions, methodological biases,

and infrastructural limitations that have shaped APR research. We unpack the key reasons for this oversight.

1. Reductionist View. A common, though rarely formalized, assumption in APR is that multi-fault programs can be fixed
by repeatedly applying single-fault repair techniques. This reductionist view overlooks two important realities: fault
interference, where fixing one fault may mask, alter, or exacerbate others, and evaluation ambiguity, where a partial
fix can still lead to failing tests, making reliable progress difficult to measure. Such oversimplification significantly
underestimates the complexity of repairing multiple interacting faults.

2. Benchmark-Centric Bias. The community’s reliance on datasets such as DEFECTs4], MANYBUGs, and INTROCLASS
has yielded a benchmark-induced bias. These datasets predominantly contain single-fault programs, inadvertently
tuning APR tools and evaluation metrics for a setting that underrepresents multi-fault realities. As a result, more
complex but common multi-fault scenarios remain underexplored.

3. Search Space and Oracle Constraints. Repairing multiple co-occurring faults introduces a combinatorial explosion
in the patch search space, as tools must consider combinations of edits across locations. Current search-based

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 3

techniques are poorly equipped to handle this scale. Moreover, conventional test-suite oracles provide only a binary
pass/fail signal, which is too coarse to guide repair in the presence of interacting faults [5]. This oracle limitation is a

fundamental theoretical challenge that has long constrained multi-fault APR research.

These factors, including flawed assumptions of fault independence, methodological biases, and infrastructural
limitations, explain why multi-fault repair remains largely unexplored. This gap is not due to a lack of relevance but to
the absence of foundational, rigorous models and tools. Our work addresses this need, reframing multi-fault APR as a

distinct and tractable research problem.

1.3 Foundational Perspective

Multi-fault APR constitutes a distinct subdomain within program repair. Given its complexity, however, it is premature
to embark directly on empirical studies or tool development without first establishing a solid theoretical foundation.
This groundwork is necessary not only due to engineering challenges but also because of the inherent difficulty of the
problem: programs with multiple faults often exhibit non-local fault interactions, non-compositional repair semantics,
and test-suite ambiguities that undermine abstractions based on the single-fault assumption.

Without formal models defining fault interaction, repair expressiveness, and localization boundaries, APR tool
behavior remains hard to predict, and empirical evaluation risks being misleading. We argue that developing scalable,
robust techniques for multi-fault repair requires a prior or co-evolving theoretical framework that rigorously defines
the space of repairable programs, the assumptions for repair, and the guarantees tools can provide.

This work provides a foundational framework for the community by clarifying the scope of the problem and its
inherent limits. Our aim is to ensure that future advances rely on a principled understanding of the challenge rather
than on ad hoc trial and error. This paper contributes by establishing the conceptual and formal groundwork on which

future studies, benchmarks, and repair tools can be confidently built.

1.4 Novelty and Scope

This work presents the first thorough theoretical framework for the multi-fault automated program repair problem,
establishing it as a distinct and rigorous subdomain. While our preliminary study [5] offered a focused analysis of the
validation oracle problem under fault interaction, it addressed only one specific challenge.

In this paper, we present a foundational theoretical contribution. We bring structure to the problem space by defining
a formal hierarchy of repair challenges and introducing the fault interaction graph (Gr) as a semantic model. This
model captures how faults and fixes may mask, reinforce, or cascade into one another, and clarifies the fundamental
computability limits that constrain repair. These elements underpin the OrchestratedRepair procedure, offering a
coherent framework for reasoning about repair. Our goal is to move beyond the limiting assumption of single-fault

repair and embrace a principled perspective that treats repair as a coordinated, dependency-aware endeavour.

1.5 Contributions
This paper makes the following key contributions to the field of automated program repair:

¢ A Solid Formal Foundation for Multi-Fault APR: We introduce a theoretical framework for multi-fault
APR by providing precise terminology, formal definitions, and models to reason about the problem. We argue
that a deep theoretical analysis is necessary to establish a principled basis for future empirical studies, avoiding
misleading assumptions and laying the groundwork for more reliable and practical tools.

Manuscript submitted to ACM

4 Omar I. Al-Bataineh

e A Formal Model for Fault Interactions: We develop a formal model to reason about fault interaction relations,
such as masking and synergy. This model is crucial for guiding both patch generation and validation, as it
enables the computation of feasible repair sequences and helps in identifying correct, comprehensive patches.
We explicitly link these formal interaction types to the core challenges of multi-fault repair, demonstrating how

they are the root cause of issues like noisy localization and ambiguous oracles.

Systematic Deconstruction of the Problem: We systematically analyze the multi-fault APR problem and
identify its intrinsic challenges, such as combinatorial patch growth, oracle ambiguity, and patch interference.

We show that these are structural characteristics of the problem rather than mere engineering inconveniences.

A Forward-Looking Research Agenda: We propose a forward-looking agenda for collaborative, orchestrated
repair. This vision shifts the focus from finding isolated patches to developing adaptive, feedback-driven repair
systems capable of managing the complex interplay of multiple interacting defects. We emphasize that this new
paradigm is not intended to replace single-fault APR tools but to coordinate and integrate them systematically,

respecting the constraints imposed by fault interactions and enabling more robust, reliable repair outcomes.

These contributions establish multi-fault program repair as a rigorous subdomain of software repair research,
providing a precise theoretical foundation, guiding the design of reliable repair techniques, and enabling systematic

empirical studies rooted in a well-defined understanding of the problem.

2 Background and Terminology

Automated program repair has advanced considerably in recent years, yet most work continues to assume programs
contain only a single fault. This simplifying assumption contrasts with the reality of modern software, where multiple
defects often coexist and interact in complex, non-additive ways. In this section, we introduce the terminology and
formal framework needed to reason about multi-fault APR. These foundations clarify how the multi-fault setting departs

from the traditional paradigm and set the stage for the challenges explored in the following sections.

2.1 The Traditional APR Problem

Early work in automated program repair has primarily targeted the single-fault setting. This focus is natural, as isolating
a single defect aligns with traditional debugging workflows, simplifies fault localization, and allows test suites to act as
practical repair oracles. Seminal repair tools, such as GenProg [25], Angelix [31], and TBar [28], all operate under the
foundational assumption that the program contains one isolated fault that can be localized and fixed independently.
Formally, the traditional APR task can be stated as follows. Given a faulty program P and a test suite T = {1, f5, ..., t; }

with at least one failing test case, the goal is to synthesize a program P’ such that:

(1) P’ is obtained from P by a minimal sequence of edits, and
(2) P’ passes all testsin T.

This abstraction has enabled impressive progress in practice, yet it rests on restrictive assumptions. The faulty
program is assumed to contain a single defect, the test suite T is assumed to provide adequate coverage, and the notion
of minimal edits is assumed to correlate with correctness. In reality, these assumptions do not hold universally. Even in
single-fault programs, the correctness of P’ cannot be guaranteed: test suites encode only partial specifications, and
the fundamental undecidability of program correctness (by Rice’s theorem) ensures that a truly sound fix cannot be
guaranteed by testing alone. Consequently, overfitting remains an unavoidable artifact of test-based validation. These

challenges are magnified in the multi-fault setting, where the very notion of an isolated defect breaks down.
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 5

2.2 A Formal Definition of a Program Fault

To establish a rigorous foundation for our analysis, we formally define a program fault in terms of its deviation from
an intended specification. By framing faults this way, we move beyond the purely operational view in which faults
are identified only through failing test cases, and instead adopt a deeper, semantic understanding of correctness.
This perspective emphasizes the fundamental relationship between a program’s behavior and its intended properties,

enabling a more principled analysis of program defects and their repair.

Definition 2.1 (Program Fault). A program P contains a fault if its behavior deviates from its specification. Formally,
we represent a program and its specification as a pair (P, S), where P is a program and S is its specification. Let beh(P)
denote the observable behaviors of P. A fault exists if P [S, meaning there is at least one property ¢ € S that P fails to

satisfy, i.e., beh(P) [~ ¢. The specification S can be derived from a test suite, formal properties, or a combination of both.

In the context of automated program repair, the specification S typically consists of properties derived from a test
suite. The presence of at least one failing test case indicates that the program fails to satisfy a corresponding property
in S. This formal definition is essential for the discussions that follow, as it provides a precise, logical foundation for

analyzing fault interactions and program repair.

2.3 Distinguishing Multi-Location and Multi-Fault Repair

In the literature, the terms multi-location repair and multi-fault repair are often used interchangeably, which has
introduced ambiguity [20]. We argue that these are in fact distinct problems, each grounded in different theoretical

assumptions. Making this distinction explicit is crucial for framing the challenges that our work seeks to address.

Definition 2.2 (Multi-Location Patch). A patch 7 is a multi-location patch if it consists of a set of code edits {1, ..., }

where k > 1, applied to distinct lines or AST nodes in the program.

A multi-location patch may be required to fix a single semantic fault. For example, a single bug in a loop might require
correcting both the loop condition and a counter variable to restore correctness. While challenging, multi-location repair

remains a form of single-fault repair, as the edits are driven by a single logical error and are often locally co-dependent.

Definition 2.3 (Multi-Fault Repair). Multi-fault repair is the process of repairing a program that contains two or more

distinct faults, f;, f; € F with i # j. A successful repair must address all faults in F.

The core insight is that not all multi-location patches are multi-fault patches, and, critically, multi-fault repair cannot
be accurately modeled as an iterated series of single-fault repairs. The latter assumption, while convenient, fails to
account for the most fundamental challenge: fault interactions.

The prevailing assumption in many APR frameworks is that a multi-fault program can be solved by an iterative
process: find and fix one fault, then repeat. This approach is valid only in the simple case of independent faults. However,
as we will formalize in Section 2.5, faults can exhibit masking or synergy. When this occurs, fixing one fault may alter
the observable behavior of others, invalidating the original fault localization and requiring a complete re-evaluation
of the problem space. This non-compositional behavior of patches for interacting faults is the central theoretical and
practical challenge of multi-fault repair. We use the terms in this paper with this precise distinction in mind, providing
a foundation for our subsequent formal analysis of interaction-aware repair.

Manuscript submitted to ACM

6 Omar I. Al-Bataineh

2.3.1 A Formal Hierarchy of Program Repair. To provide a clear conceptual framework, we formally define the different
program repair problems as sets, revealing a precise hierarchy that grounds our work. We define the problem sets based

on the characteristics of the underlying fault structure:

o Let PROGgr denote the set of all Single-Fault repair problems, characterized by the existence of exactly one
logical error, where the set of faults F has cardinality |F| = 1.

o Let PROGy, denote the set of all Multi-Location repair problems, a subset of PROGgr where the single logical
fault requires edits spanning multiple code locations.

o Let PROGggN (or PROGyr) denote the set of all General Program Repair problems, where the program contains

one or more distinct faults (|F| > 1), encompassing all scenarios where interaction may occur.

Using the general repair set, we establish the following formal relationships that clarify their hierarchy:

(1) Multi-Location as a subset of Single-Fault: By definition, a multi-location repair problem is a specialized case of a
single-fault problem where the underlying logical cause is singular. Thus, we have the formal relationship:

PROGy;, € PROGgr

(2) Single-Fault as a subset of General Repair: Any single-fault problem is merely a special, simplified instance of
the general repair problem where the fault set cardinality is |F| = 1. Since the general problem PROGggn covers

all cases where |F| > 1, this leads to the relationship:
PROGs; € PROGGEN

These relationships reveal a clear hierarchy: the general repair problem (which we address as multi-fault repair in the
body of this paper) forms the broadest domain, encompassing single-fault repair, which in turn includes multi-location
repair. This nested structure, as shown in Fig. 1, confirms our central thesis: multi-fault repair represents the most

general and challenging form of the problem, encompassing all other variants.

PROGGEN

PROGgk

Fig. 1. Conceptual hierarchy of program repair problems. The set of multi-fault repairs PROGwmr strictly contains the set of single-fault
repairs PROGsr, which in turn strictly contains the set of multi-location repairs PROGy.

2.4 Multi-Fault Programs

Real-world software rarely contains just a single, isolated defect. Empirical studies consistently show that multiple
faults often coexist within the same module or along the same execution path, creating subtle dependencies that make
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 7

both debugging and automated repair significantly more challenging. This naturally raises the question: why not simply
apply traditional APR iteratively, fixing one fault at a time until all failures are resolved?

Sequential single-fault repair is often inadequate for formal reasons. Iterative approaches implicitly assume fault
independence, a condition rarely met in practice. The effectiveness of a repair sequence depends critically on fault
ordering: an early patch may mask or alter the manifestation of other faults, while some only surface after others have
been addressed. For example, consider a program with a masking fault f; and a second fault f,. A naive tool might first
fix fi, producing a patch that is locally valid but unmasks f;, introducing new test failures and requiring re-localization
and re-repair. In extreme cases, mutual dependencies between faults can lead to an infinite repair loop. This shows that
fault ordering is not merely a performance concern: it is a correctness issue that fundamentally shapes the search for a
solution, validating the view that independence is the exception rather than the rule.

Second, without a reliable oracle capable of reasoning about partial correctness, iterative approaches cannot guarantee
steady progress. A patch that fixes one fault but leaves other interacting faults unaddressed may still trigger test failures,
leading the repair tool to incorrectly discard the patch as invalid. This inherent ambiguity in the oracle’s signal can

prevent iterative tools from making confident and systematic progress toward a complete and correct fix.
Definition 2.4 (Multi-Fault Program). A multi-fault program is a program with a fault set F = {f;, ..., f,},and n > 1.

To clarify this definition, we provide a specific example demonstrating how multiple faults within the same routine
can interact in complex ways. The function in Listing 1 includes three faults that show both masking and synergistic

effects, highlighting why fixing faults one at a time is not enough without understanding how faults interact.

1 float process_transaction(float balance, float amount) {
2 float fee = 0.0;

3 // F1: Threshold check (off-by-one error)
if (amount > 10.0) { // Should be 'amount >= 10.0'

5 fee = 1.0;
6 }
// F2: Premature error (wrong condition - masking fault)
8 if (balance > amount + fee) { // Should be 'balance < amount + fee'
9 return -1.0; // Premature exit masks later calculation errors
o}

1 // F3: Calculation error (operator misuse)

12 balance = balance - amount + fee; // Should be 'balance - amount - fee'

return balance;

Listing 1. Example of multi-fault function with three interacting faults

Masking Interaction (f, — f3). Fault f, (Line 8) implements a premature error check with an incorrect condition.
Specifically, it returns an error when the balance is actually sufficient (balance > amount + fee instead of the correct
balance < amount + fee). This premature exit masks the downstream fault f; (Line 12), since execution halts before

reaching it under the failure-inducing test case Ty4. If a repair tool fixes f; in isolation, the previously hidden f; is exposed,
Manuscript submitted to ACM

8 Omar I. Al-Bataineh

causing new failures. A heuristic tool may then misinterpret the f, fix as a regression. Capturing such dependencies

requires a structural model of interactions, which we introduce in the following subsection.

Synergistic Interaction (f; <> f3). Fault f; (Line 4) contains an off-by-one condition, while fault f3 (Line 13) misuses

an arithmetic operator. Neither fault alone is sufficient to explain the observed failures:

e Fixing f; alone exposes the severity of f3, leading to an inflated error (the fee is added instead of subtracted).

e Fixing f; alone still leaves the threshold condition incorrect.

The only valid solution is a joint patch $; 5 that addresses both faults atomically. Anticipating such clusters again calls

for a formal framework to represent and reason about fault interactions, which we develop next.

This example shows that the challenge of multi-fault programs lies not simply in fault multiplicity, but in their
structured interactions. Without an explicit model, even advanced LLM-based repair is prone to misinterpretation,
backtracking, and wasted synthesis. The next subsection introduces the fault interaction graph Gr which provides the

structural foundation to orchestrate correct and efficient repair.

2.5 Fault Interactions

Real-world software rarely contains a single, isolated defect. Empirical studies have shown that multiple faults often
coexist within the same module or execution path, resulting in subtle dependencies that complicate debugging and
repair [4, 11, 12, 43]. These dependencies constitute the central distinction of multi-fault programs. We capture these

interactions formally using a graph structure to enable a principled and systematic taxonomy of influence relations.

Definition 2.5 (Fault Interaction Graph (Gr)). The interactions among a set of faults F in a program P are formally
modeled by a Fault Interaction Graph, denoted Gr = (F, I), where:

e Nodes F: The set of all distinct faults in the program, F = {f}, fo, ..., fo}.
e Edges 7: The interaction relation, defined as a subset of the Cartesian product 7 € F X F X R, where R =
{Mask, Synergy, Indep, Cascade} is the set of interaction labels.

An edge (fi, fj,r) € I exists if and only if fault f; demonstrably influences the run-time behavior (manifestation,
observability) or the repair orchestration strategy of f; by the specific interaction type r € R. Two faults f; and f; are
considered strategically linked iff either (f;, fj,r) € I or (fj, fi,r’) € I for some r,r" € R.

The labeled edges of Gy capture the causal nature of dependencies between faults. We formally define the dependence

modes observed in multi-fault programs, linking each to a unique graphical notation for the APR orchestrator.

e Masking (r = Mask): f; ~ f;. A fault f; suppresses the manifestation of f; (e.g., by causing an earlier crash),
rendering f; unobservable when both are active. This is an asymmetric causal dependency.

e Cascading (r = Cascade): f; — f;. A state corruption or error caused by f; propagates and acts as the input
condition that directly activates f;. This is an asymmetric flow of data or control dependency.

e Synergy (r = Synergy): f; <> f;. Faults f; and f; jointly produce a composite failure that cannot be triggered by
either fault in strict isolation. This is a symmetric, joint dependency requiring combined repair.

e Independence (r = Indep): f; = f;. Faults f; and f; affect disjoint parts of the program state and exhibit no

observable influence on each other’s manifestation or repairability. This is a symmetric, non-causal relation.

These distinct interactions can obscure failures, mislead localization, and compromise validation [4]. Modeling the

relation 7 is therefore essential for rigorous reasoning about repair correctness in multi-fault scenarios.
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 9

Aspect of Repair Heuristic/Greedy (Without Gy) Orchestrated/Principled (With Gj)

Repair Strategy Reactive, iterative trial-and-error Proactive, dependency-driven

Handling Masking High risk of misinterpreting root fix as regression Orders fask < fmasked; €xpects failure
Handling Synergy Fails to converge; discards valid components Mandates composite patch synthesis (rr; ;)
Search Space Large, includes redundant/conflicting fix combinations Pruned; focuses search on interacting clusters
Efficiency Inefficient; wastes time on conflicting or partial fixes Efficient; avoids incompatible fix combinations
Correctness Weaker; relies solely on final test suite pass Stronger; structurally ensures dependencies are satisfied

Table 1. Comparison of Multi-Fault Repair Strategies With and Without the Gy Model

Extensibility of the fault interaction model. While R = {mask, synergy, indep, cascade} captures the core functional
dependencies documented in empirical multi-fault studies [11, 12], our formal framework is designed for extensibility.
The labeled relation 7 can be readily augmented to incorporate additional structural dependencies that are critical for
repair synthesis and validation. Examples include Resource Contention, where f; and f; compete for a limited resource;
API Version Conflict, where fixing f; necessitates an API change that inadvertently breaks f;; and Patch Interference,
where the patch for f; syntactically overlaps with, and potentially invalidates, the patch for f;. This inherent flexibility

ensures that Gr remains both scalable and adaptable, capable of representing emerging fault interaction patterns.

2.6 Why G; Matters: Orchestration vs. Heuristics

The key value of the fault interaction graph Gy is its transformation of the repair process from a heuristic, trial-and-error
search into a principled, dependency-driven orchestration. While an LLM or traditional APR tool can synthesize a patch,
only the G; provides the structural intelligence required to ensure global correctness and optimal efficiency in the

multi-fault setting. We illustrate this key distinction using two fundamental scenarios derived from our taxonomy R:

Case 1: Masking Interaction. Consider two faults where f; masks f; (i.e., (fi, fo, mask) €).

o Without Gr (Heuristic): Upon identifying a failing test, the system attempts to repair f;. Since f, remains, the test
suite still fails (potentially with a different, f,-induced failure). The heuristic model may misinterpret this as the
fi patch being a regression or insufficient, leading to rollback or costly re-synthesis.

e With G (Orchestrated): The orchestrator, having inferred the f; < f; dependency, prioritizes fixing f;. It then
expects the test suite to still fail due to the unmasked f. This strategic expectation prevents misinterpreting the

result, and the process proceeds directly to the successful localization and repair of f;.

Case 2: Synergistic Interaction. Consider two faults that are synergistic, requiring a joint fix (7 2) to pass all tests.

o Without Gr (Heuristic): The system attempts sequential, single-fault fixes ($; then ;). Since neither single fix
will pass the full test suite, both are discarded as invalid. The process enters an endless, ineffective loop of trial
and error, failing to realize the requirement for a joint repair.

e With Gr (Orchestrated): The orchestrator identifies f; and f, as a synergistic cluster. It bypasses sequential
patching and mandates the LLM (or synthesizer) to generate a single, joint patch $; ;. This structural guidance

efficiently guides the synthesis toward the only valid solution.

Table 1 compares heuristic-driven repair with orchestrated repair using Gy. It synthesizes the insights from the
preceding cases, demonstrating how Gy transforms multi-fault repair from a reactive trial-and-error process into a

principled, dependency-aware approach that enhances correctness, efficiency, and robustness.
Manuscript submitted to ACM

10 Omar I. Al-Bataineh

2.7 The Multi-Fault APR Problem

Building on the preceding discussion, the multi-fault automated program repair problem must explicitly account
for interacting faults and for the possibility of addressing them either sequentially or through a unified repair. This

fundamental redefinition of the problem is a central contribution of this paper.

Definition 2.6 (Multi-Fault APR Problem). Given a program P with a fault set F and an interaction-aware test suite

Tvr, the objective is to synthesize a program Py such that:

(1) P}y semantically repairs all faults in F, either through one composite patch or a set of partial patches, and

(2) P passes all tests in Ty and any additional validation suites.

Importantly, this distinction highlights two primary repair modalities, which correspond to different classes of repair
tools. Traditional incremental systems tend to produce partial patches that address subsets of faults, whereas modern

Al-based approaches often attempt holistic fixes through composite patches. We formalize these patch types below.

Definition 2.7 (Partial Patch). Given a program P with a set of faults F = {f, ..., f,} and a test suite T, a patch P is a
partial patch if, when applied to P yielding P’ = apply(P, P), P’ passes a subset of tests in T that were failing for P, but

P’ fails at least one test in T. A partial patch may resolve some faults in F while leaving others unresolved or hidden.

Definition 2.8 (Composite Patch). Given a program P with a set of faults F = {fi, ..., f,} and a test suite T, a patch
Teomposite 1S @ composite patch if it results from the application of a set of patches {1, ..., Pn} (Where each #; addresses
one or more faults in F) such that, when applied to P yielding Pana1 = apply(. . . apply(apply (P, P1), P2). - - ., Pm), Panal
passes all tests in T. A composite patch is intended to collectively resolve all faults in F and restore the program’s full

intended functionality as verified by T.

From this perspective, three fundamental challenges emerge that reveal why multi-fault APR is qualitatively distinct:

e Fault localization: Detecting multiple interacting faults is an ill-defined task when masking or cascading
relations distort failure observability. Traditional suspiciousness metrics, which are often based on a single fault
hypothesis, can become noisy and misleading, guiding the repair process towards irrelevant code regions.

o Patch synthesis: Constructing composite patches requires reasoning over a combinatorial interaction space. As
the number of faults and their dependencies grow, the patch search space expands exponentially. Sequential
repair is insufficient, as the repair order can alter which faults remain detectable, while a single-shot, composite
patch must holistically address all dependencies.

e Patch validation: Ensuring that P| . generalizes beyond the immediate test suite is significantly harder than in
the single-fault case. Overfitting may occur at the level of individual faults (ignoring masked ones) or at the level
of interactions (handling faults independently but not jointly), a challenge with profound implications for the
correctness of any automated fix.

These challenges reveal that multi-fault APR is not a mere extension of the single-fault case. Rather, it constitutes a

qualitatively distinct problem space, one that demands new theoretical foundations and repair techniques capable of

orchestrating dynamic analysis, formal reasoning, and multi-fault synthesis.

3 Why Multi-Fault APR is More Challenging than Single-Fault APR

The transition from single-fault to multi-fault automated program repair is not merely an incremental step; it represents

a qualitative shift to a new class of problems. As we formalized in the previous section, the presence of multiple
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 11

faults gives rise to intricate dependencies and interaction types (e.g., masking, synergy, cascading) that fundamentally
break the assumptions of traditional APR. In what follows, we outline seven core challenges that emerge from these
formalisms, demonstrating how they distinguish multi-fault APR from the single-fault setting. These challenges are not

just practical hurdles but are tied to the fundamental theoretical limits that structure the remainder of this paper.

3.1 Fault Interaction and Entanglement

Building on the formalisms from the previous section, the most significant challenge is the inherent entanglement of
faults. Multi-fault programs rarely exhibit faults in isolation. Instead, their behavior emerges from complex interactions.
A dominant fault may mask the manifestation of others, preventing their detection until the first is resolved. In other
cases, multiple defects exhibit synergy, where the combination of otherwise benign faults leads to a failure. Cascading
effects are also possible, where one fault creates an erroneous state that triggers another. These interaction patterns
make both localization and repair non-trivial, as fixing one defect may inadvertently expose additional failures or
introduce regressions. In contrast to single-fault APR, which largely assumes fault independence, independence is the
exception rather than the rule in the multi-fault setting.

Fig. 2 provides a visual taxonomy of these fault interaction types and their respective impacts on the program repair
process. As the figure illustrates, only fault independence allows for a straightforward repair using existing techniques.
The other interaction types fundamentally challenge the core assumptions of traditional APR, demanding a more

sophisticated, interaction-aware repair strategy.

[Program P with faults i, f,]

triggered by a test suite T

| l l l

Fault Independence: Fault Synergy: Fault Cascading: Fault Masking:
I(fi.fj»P,T) = indep I(fi.fj,P,T) = synergy I(fi.fj,P,T) = cascade I(fi.fj,P,T) = mask
Impact on APR:) Impact on APR: I.ml?act on APR: .Impact on APR:
. . . Fixes must address com- Identifying the root fault Patching one fault may un-
Straightforward with exist- . e PooyfEirs . - -
ing. single-fault techni bined behavior; individual is essential to prevent mask others, requiring an
(s B LR, LS, patches are often insufficient. re-introduction of bugs. iterative, context-aware approach.

Fig. 2. A taxonomy of fault interaction types and their impact on automated debugging and repair. 7 (f;, f;, P,T) denotes the
semantic interaction between two faults under a set of failing test cases T.

3.2 A Formal Perspective on Overfitting and Its Complication in Multi-Fault Repair

Overfitting is a central challenge in automated program repair, rooted in the fundamental disconnect between full
semantic correctness and behavior on a finite test suite [24, 33, 37, 39]. In the single-fault setting, this problem is
well-understood, but in the presence of multiple interacting faults it escalates to a new level of complexity. We formally

deconstruct how multi-fault scenarios exacerbate this challenge.

Definition 3.1 (Single-Fault Overfitting). Let P be a faulty program, Peoyrect the corresponding correct program, and T
a finite test suite. A patch x yielding P’ = apply(P, x) is an overfitting patch if Vt € T : run(P’,t) = run(Peorrect, t), yet
P’ # Peorrect (i€, P’ is not semantically equivalent to the correct program).

Manuscript submitted to ACM

12 Omar I. Al-Bataineh

In traditional APR, overfitting is an unavoidable consequence of using the test suite as a partial oracle. Thus, a patch
may satisfy T by coincidence, repairing the observed failures while introducing behavior that is correct only for the
restricted set of inputs in T but fails in other contexts.

In the multi-fault setting, overfitting becomes more insidious. Beyond fitting a partial specification, a patch may
also fit a misleading or ambiguous fault model. Because failing tests may not accurately reflect the true root causes of

failure, due to masking and synergistic interactions, the repair system may target symptoms rather than causes.

Definition 3.2 (Multi-Fault Overfitting). Let P be a program with fault set F and correctness specification S (e.g., a test
suite). A composite patch Zcomposite applied to P is an overfitting multi-fault patch if it satisfies S but:

(1) fails to repair one or more faults in F that are masked by others; or
(2) introduces regressions that are not detected by S; or

(3) semantically overfits to the observed fault interactions, failing when context or interaction patterns change.

This form of overfitting is particularly subtle. A naive APR tool, unaware of the fault interaction graph 7, may repair
a visible symptom without addressing its underlying cause. For example, a synergistic interaction between faults f; and
f; may be superficially “fixed” by a patch that suppresses the combined failure but leaves both f; and f; intact. Such a
patch will pass all existing tests, yet it fails once future inputs or changes separate the two faults. This is a form of deep
overfitting: the patch addresses an observed symptom while the semantic flaws remain.

Similarly, repairing a masking fault f; without subsequently unmasking and correcting the hidden fault f; also
constitutes multi-fault overfitting. In effect, the tool overfits to the single-fault hypothesis despite the program’s
genuinely multi-fault nature.

Our proposed procedure, OrchestratedRepair (detailed in Section 6.3), is explicitly designed to address these deeper
forms of overfitting. By deriving a repair order from 7 and refining the model when validation fails, the procedure

moves beyond superficial, symptom-level fixes and aims instead for robust, semantically sound repairs.

3.3 Noisy and Misleading Fault Localization

Fault localization (FL) techniques, such as spectrum-based and mutation-based methods, are based on a fundamental
assumption: that there is a direct correlation between a single fault and a failing test suite. In multi-fault settings, this
assumption breaks down [42]. Specifically, a single failing test may be caused by a complex interplay of faults, making
the observed failure an unreliable signal for localization. This produces noisy and misleading suspiciousness scores,
undermining a key input to any APR pipeline.

Formally, let F denote the set of faults in a program P, and let T C T be the set of failing tests. Traditional

suspiciousness metrics, such as Ochiai, compute suspiciousness for a statement s as [1]:

failingTestsCovering(s)
\IT¢[- allTestsCovering(s) '

susp(s) =

In a multi-fault scenario, a failing test t € Tr may be triggered by a fault set F; C F. The numerator, failing TestsCovering(s),
counts all failures traversing s, regardless of whether s actually contains the fault responsible for the failure.

This gives rise to two key problems: Misattribution and Dilution. Misattribution occurs when a test fails due to fault
f; but traverses a clean region s, near fault f,. The failure signal from f; is incorrectly assigned to s, increasing its
suspiciousness and masking the true fault location. Dilution occurs because the failure signal (|T¢|) is spread across

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 13

multiple independent fault sites, lowering scores for actual fault locations and hindering prioritization. This corruption

of the suspiciousness ranking is a fundamental challenge for multi-fault APR.

3.4 The Multi-Fault Oracle Problem

The limitations of traditional test-suite oracles are not mere inconveniences; they point to a fundamental theoretical
challenge. To enable effective multi-fault repair, it is essential to define the properties of an ideal multi-fault oracle.
Formally, let P be a program with a set of faults F, and let T be a test suite. Applying a patch # to P produces a
patched program P’. A traditional test-suite oracle, Og, returns a binary result:
correct, ifVt € T, P’ passes t,
Otrad(P/’ T) =
incorrect, otherwise.
While sufficient for single-fault repair, this binary signal is inadequate for multi-fault scenarios. A partial patch that
fixes only some faults may still fail Oy,q4, causing the repair process to discard useful partial fixes.
We propose that a multi-fault APR oracle must be interaction-aware and produce richer feedback. An ideal multi-fault

oracle, O, should satisfy the following properties:

(1) Partial Correctness Signal: Oy must produce a non-binary output indicating which faults or interactions have
been addressed by a patch. This is essential for guiding sequential repair and validating partial fixes.

(2) Monotonicity: Applying a valid partial patch for a subset of faults F/ C F should not cause the oracle to signal
regression unless it unmasks a hidden failure. This ensures measurable, non-negative progress during repair.

(3) Interaction Inference: The oracle must detect fault interactions. For example, if a patch fixes a failure but causes a
previously passing test to fail, the oracle should identify a masking relationship rather than a simple regression.

This feedback is vital for orchestrating the repair process.

Designing such an oracle is a substantial research challenge. It requires advances in fault localization, dynamic
analysis, and potentially formal methods to go beyond simple pass/fail checks. This oracle is the missing link between
the theory of fault interactions and a practical, scalable multi-fault APR framework. Without it, multi-fault repair

remains fundamentally constrained by incomplete and potentially misleading guidance.

3.5 Benchmarking Gaps and Evaluation Challenges in Multi-Fault Repair

Automated program repair has advanced significantly in recent years, supported by widely used benchmarks such as
DEerecTs4] [22] and MANYBUGS [18]. These resources, however, were designed and validated under the assumption that
each program version contains a single fault. As a result, the community currently lacks a standardized benchmark
suite for evaluating APR techniques on programs with multiple interacting faults.

This absence creates significant obstacles for evaluation. In the absence of standard benchmarks for multi-fault
programs, each study must define its own scope of the problem and validation procedure. Such ad hoc choices hinder
reproducibility and make it difficult to compare results across approaches in a systematic way. As a consequence,
progress in multi-fault repair remains difficult to measure at the community level.

From a testing perspective, the limitations are even more pronounced. Multi-fault programs pose distinctive challenges:
a patch addressing one fault may interact with, obscure, or even exacerbate another. The absence of standardized
multi-fault test cases and associated oracles prevents researchers from systematically assessing whether an APR tool
can robustly address fault interactions or avoid regressions once a partial fix is applied.

Manuscript submitted to ACM

14 Omar I. Al-Bataineh

Current evaluation practices also fall short conceptually. Widely used measures such as correct patch rate provide
limited insight in multi-fault scenarios. They do not capture the nuances of partial repairs or the incremental progress
an APR technique may achieve when some, but not all, faults are resolved. Without metrics that quantify the degree of
repair, such as the number or proportion of faults addressed, it is difficult to establish common ground for assessing

progress or to justify claims about the effectiveness of multi-fault repair techniques.

3.6 Patch Interference and Dependency

In the single-fault setting, candidate patches can usually be evaluated independently. In contrast, multi-fault APR
introduces interdependencies: applying one patch may alter the program state in ways that are necessary for another
patch to succeed, or two patches may conflict, leading to regressions. Consequently, the order in which patches are
applied becomes crucial: an inappropriate sequence can obscure faults or even prevent successful repair.

To reason about these interactions, we formalize the notion of patch interference. This definition captures dependencies

and potential conflicts between patches, providing a foundation for understanding the dynamics of multi-fault repair.

Definition 3.3 (Patch Interference). Let Py be the original faulty program with fault set F = {f3, ..., f,}. We define
IT = (P1,...,Pk) as an ordered sequence of subpatches, where P; is the patch intended for fault f;. The sequential
application of this sequence results in the program state Py = apply (%%, ..., apply (%2, apply (1, Po)) ...). A sequence
IT is a valid repair sequence for a subset of faults F C F if the resulting program Py semantically corrects all faults in
F’. A patch P; from a sequence IT is said to interfere with a patch P; (with i # j) if the sequence (P}, P;) is not a valid
repair sequence for faults {f;, f;}, but the sequence (P;, P;) is.

This definition highlights that in multi-fault repair, patches are not independent variables but elements of a complex
system, where the order of application matters as much as the content of the patches themselves. To illustrate this
non-commutativity, consider a program with two faults: missing null check (f;) and a faulty lookup function that
occasionally returns a null value (f;). Let $; be the patch to add the null check and $, be the patch to fix the lookup
function. The sequence (#;, $,) would be a valid repair sequence: the null check is added first, and then the faulty
lookup is fixed, resulting in a semantically correct program. However, the sequence (#,, #;) could fail. If we first apply
P, to fix the lookup, the program may no longer produce null values. In this new context, applying #; (the null check)
might be considered redundant or even incorrect by a sophisticated repair engine, especially if the patch introduces an
unintended side effect. This example demonstrates how the application of one patch (#,) can fundamentally alter the

context for another (#;), causing the second patch to fail and leading to a non-valid repair sequence.

3.7 Undefined Stopping Conditions

In single-fault APR, there is a clear stopping criterion: the repair is considered complete once the program passes all
tests in the validation suite. In the multi-fault scenario, this stopping criterion no longer applies, and the problem of
patch validation becomes significantly more complex.

One may argue that a multi-fault program can be treated as a single, complex problem and that only the final,
composite patch needs to be validated. However, this approach is fundamentally flawed for two systematic reasons.
First, it creates a black box validation problem: if a composite patch fails, the test suite provides no information about
which of the constituent edits or underlying faults is responsible. This lack of diagnostic feedback makes it impossible
to systematically debug or refine the patch, reducing the repair process to a series of blind, expensive attempts.

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 15

Second, this perspective ignores the value of partial progress. As we have argued, sequential repair strategies might
produce patches that fix a subset of faults but leave others unaddressed. These partial patches will inevitably cause
the program to continue failing some tests. A naive oracle would incorrectly label these as “incorrect”, leading the
repair process to discard a valid, incremental step towards a complete solution. Therefore, a successful multi-fault repair
strategy must be able to reason about and validate partial patches.

This reveals a deeper limitation that extends beyond traditional pass/fail oracles: repair processes require oracles that
can offer richer, incremental feedback. To capture this idea, we introduce two complementary notions of correctness
oracles. A partial correctness oracle assesses the incremental effect of a patch on individual faults, while a composite
correctness oracle evaluates the correctness of the overall, fully composed fix. Together, these two oracles form the

backbone of our formal framework for analyzing progress and completeness in multi-fault repair.

Definition 3.4 (Partial Correctness Oracle). Let F be the set of faults and P,)q denote the current partially-patched
program state (i.e., the state before the current orchestration step). The oracle evaluates a candidate patch P, which is
intended to fix a specific fault f; € F.Let P’ be the resultant program after applying the patch, defined as P’ = P4 0 P%.
Let S denote the set of correctness properties. A partial correctness oracle is a function Opariial : Program x Program x

FX8 — (AS, Frem) that maps the two program states, the fault set, and the properties S to the output tuple:

(1) Net Satisfaction Change (AS): The set of newly satisfied properties, calculated as: Sgatisfied (P’) \ Ssatisfied (Pold)-
(2) Remaining Faults (Frem): The subset of faults from F that are still deemed present in P’.

A partial patch Py is considered successful if AS # 0. The orchestrated repair procedure utilizes this oracle to guarantee

monotonicity, ensuring that the set of satisfied properties never decreases across successive patch applications.

Definition 3.5 (Composite Correctness Oracle). Let P be the original program with the initial fault set F, and P”’ the
final program obtained by applying a composite patch Zcomposite- Let S denote the set of correctness properties (e.g.,
test suite). A composite correctness oracle is a function Ocomposite : Program x F x S — (Verdict, Funresolved, ¥) that

maps the final patched program P”, the original fault set F, and S to the following output tuple:

(1) Verdict: The oracle returns one of the following outcomes:

e Correct: All properties are satisfied (Ssatisied = S), and all faults are resolved (Fupresolved = 0).

o Incorrect: Some properties remain unsatisfied (Ssatisfied C S), or new faults (regression) have been introduced.
(2) Unresolved Faults (Fypresolved): The set of faults from F that remain uncorrected in P”.
(3) Diagnostic Feedback (¥): A structured explanation of the failure, identifying remaining fault interactions or

patch components that caused the failure/regression.

This oracle thus serves as the final arbiter of correctness, requiring both functional satisfaction (Sstisfied = S) and

structural assurance (Fupresolved = 0).

These two notions clarify the dual role of oracles in multi-fault repair. Oracles for partial patches must recognize and
reward incremental progress, accepting patches that correctly address some faults even if others persist. This requires
the ability to associate failing tests with specific faults, a capability that conventional test oracles typically lack. In
contrast, oracles for composite patches are responsible for diagnosing failures in fully integrated repairs, identifying
which component or interaction caused incorrect behavior. By distinguishing these two roles, our framework enables
both fine-grained progress evaluation and principled diagnosis of composite patch failures.

Table 2 summarizes the contrast between single-fault and multi-fault program repair. The comparison shows that

multi-fault APR is not merely more difficult but structurally distinct: each stage of the pipeline, from fault localization
Manuscript submitted to ACM

16

Omar I. Al-Bataineh

Table 2. Comparison of challenges in Single-Fault vs. Multi-Fault Automated Program Repair (APR).

Challenge

Single-Fault APR

Multi-Fault APR

Fault Localization

Focused to a single line or statement.

Noisy, interdependent, and ambiguous. One
fault’s failure signal can mislead the localiza-
tion of others.

Patch Validation

Clear (binary outcome). A test suite serves as
a definitive pass/fail oracle.

Ambiguous. A patch may fix one fault but fail
others due to interactions. Partial passes pro-
vide limited signal.

Test Suite Oracle

A single test suite provides a coarse, mono-
lithic oracle.

Fragile, incomplete; fault interactions can mis-
lead the suite, requiring partial oracles.

Fault Interactions

Rare: Faults are assumed independent.

Frequent and complex, with masking, synergy,
and cascading dependencies (). Example: a
masking fault f; prevents fault f; from failing
a test until fi is fixed.

Patch Overfitting

Inherent but contained due to partial test cov-
erage (T £ S).

Magnified. Overfitting can occur not just to
partial tests, but to a misleading fault model
from interacting failures.

Repair Expressiveness

Patches target a single logical fault, possibly
multi-location.

Composite patches are required; order and in-
teractions must be carefully managed.

Benchmarks

Standardized and widely used benchmark
suites (e.g., Defects4]).

Scarce and incomplete; absence of multi-fault
benchmarks hampers reproducible, scalable
tools and hinders fair comparison.

Stopping Condition

Clear: stops when all tests pass.

Ambiguous; requires a reliable signal that all

faults in F are resolved, complicated by mask-
ing and oracle limitations.

through patch synthesis to validation, becomes more complex, less deterministic, and less well-defined. These challenges
are interrelated and stem from the inherent nature of interacting faults. We argue that they form the central motivation

for the research agenda presented in the remainder of this paper, which aims to address these fundamental limitations.

4 The Role of Large Language Models: A Synthesis Engine Within a Principled Framework
Recent advances in Large Language Models (LLMs) such as GPT-4 [35], Codex [8], and CodeLlama [38] have raised

expectations about their potential to transform automated program repair. Their ability to generate syntactically correct,
context-aware code snippets, often guided only by a prompt and failing tests, has already yielded impressive results on
widely used single-fault benchmarks like DEFECcTs4]. This progress has, however, encouraged a misconception: that
LLMs, by themselves, are capable of resolving the broader and more intricate challenge of multi-fault repair.

We emphasize that this is not the case. LLMs are best understood as powerful synthesis engines: tools capable of
producing candidate code patches with remarkable fluency, but they do not resolve the fundamental theoretical and
practical challenges of program repair. Multi-fault repair requires more than plausible patch generation: it requires
principled reasoning about fault interactions, systematic validation, and guarantees about correctness and termination
that lie outside the scope of current LLM capabilities. In the remainder of this section, we clarify these limitations and
outline how LLMs may nevertheless play a constructive role within structured, feedback-driven frameworks.

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 17

4.1 Why LLMs Alone Struggle with Multi-Fault Repair

LLMs bring strong synthesis power to APR, but their contributions must be understood in context: they remain
fundamentally heuristic and do not provide semantic guarantees. In multi-fault scenarios, this limitation is especially
pronounced, as the interaction between faults amplifies the ambiguity of validation and the risk of incomplete fixes.
Heuristics, Not Proof: An LLM-generated patch is a heuristic proposal: it may plausibly satisfy failing tests or even
appear structurally correct, but it carries no assurance of semantic validity. Overfitting remains a central risk, as LLMs
can produce patches that superficially repair observed behaviors while introducing regressions elsewhere. This issue is
not unique to LLMs but is magnified by their tendency to prioritize plausible syntax over formal correctness.

The Oracle Problem and Interaction Ambiguity: The effectiveness of an LLM-generated patch ultimately depends
on its oracle, typically a test suite. In the single-fault setting, a passing suite often correlates with correctness. In
multi-fault programs, however, the oracle is far less precise: a patch that addresses one fault may still fail due to another
(masking), or may only function when paired with another fix (synergy). From the LLM’s perspective, all such failures
collapse into the same coarse signal—“fail”, making it difficult to refine the repair process based on interaction type.
Structural Blindness: The Non-Compositional Fix: Perhaps most critically, LLMs lack a structural model of the
problem spac. They treat patch generation as an isolated act of prediction rather than part of a structured repair process.
Multi-fault repair, however, requires reasoning about compositional dependencies and repair sequence optimization,

the very information captured by the fault interaction graph (FIG). An LLM cannot inherently determine:

o The correct order of repair required by a cascading fault chain.
e Whether two seemingly independent faults are actually synergistic and require a single, composite fix.
o If a fix for f; will unmask a hidden fault f;.

The LLM can synthesize a patch, but it cannot perform the necessary graph-based reasoning to ensure the fix is
structurally sound and globally correct, demonstrating the need for an external orchestrator guided by Gj.

Additional Practical Limitations: Beyond the semantic and structural challenges, LLMs face practical issues. Their
outputs are inherently non-deterministic, with successive runs often producing different candidate patches, which
makes reproducibility and systematic evaluation difficult. They are also highly sensitive to context: even small variations

in prompts or surrounding code can lead to drastically different outputs, undermining stability.

4.2 LLMs as a Component, Not a Complete Solution

Multi-fault repair is inherently a structured process: multiple interacting faults must be localized, disentangled, and
incrementally repaired with systematic feedback. LLMs, though highly capable at generating candidate code, are not
sufficient as standalone solvers for this task. A more promising perspective is to integrate them as one component
within a principled repair framework that orchestrates synthesis, validation, and refinement.

Concretely, one may envision an orchestrated workflow in which an LLM acts as the primary synthesis engine,
guided by external analysis. The process might begin with fault localization, using either traditional or LLM-assisted
techniques to identify suspicious regions that may harbor multiple defects. Once these regions are identified, the LLM
can be prompted with the relevant code context and failing tests to generate candidate patches. These candidates are
then subjected to systematic validation and refinement, drawing on complementary mechanisms such as test suites,
fuzzing to uncover hidden fault interactions, and, where feasible, formal verification for critical components. In this
way, the LLM’s generative strength is harnessed not in isolation but as part of a structured loop that incrementally
steers repairs toward correctness. In such a design, the orchestrator, not the LLM alone, manages the decomposition of

Manuscript submitted to ACM

18 Omar I. Al-Bataineh

multi-fault repairs, the sequencing of sub-patches, and the systematic validation of results. LLMs thereby function as

powerful assistants, extending the space of candidate repairs, but always under the control of rigorous analysis.

5 Formal Model of Fault Interactions

Traditional testing techniques encounter significant challenges when applied to multi-fault programs. First, they often
fail to accurately differentiate between multiple faults occurring simultaneously, which makes isolating individual
issues more difficult. Second, they are inadequate at managing masking faults, where one fault conceals or prevents the
activation of another, resulting in incomplete diagnostics and misplaced confidence in repairs. Third, estimating the
total number of faults becomes unreliable when fault interactions alter observable behaviors, complicating efforts to
evaluate test completeness or fault coverage. Finally, the computational complexity involved in analyzing multi-fault
programs escalates quickly, as the number of potential fault interactions increases exponentially, making it hard to scale
existing test generation or analysis techniques. These limitations reveal the need for a deeper, formal understanding of
how faults interact and how such interactions fundamentally undermine current testing, localization, and repair.

In this section, we formalize a set of fault interaction types that provide the theoretical foundation for our analysis.
These definitions are crucial for understanding why multi-fault programs are not merely a scaled-up version of the
single-fault problem, but rather a qualitatively distinct one. Our primary goal is to formalize how these interactions

impact observability and interfere with automated reasoning about faults.

5.1 Definitions and Setup

Let P be a program with a set of faults F = {fi, f2,..., fn}, and let T be a test suite that exposes each fault f; € F. To

reason about how faults behave and interact under different settings, we define the following functions:

e Execution: exec(f;, P[C], T) € {false, true} denotes whether fault f; is executed under any test in T, when program
P is instrumented with the fault set C C F.

e Visibility: o(f;, P[C],T) € {false, true} indicates whether fault f; causes an observable failure in at least one test
from T when evaluated in the context of fault set C.

e Behavior: beh(f;,C) € {C, H,E, L, N} represents the failure mode caused by fault f; when active with fault set C.
The values are: C for crash, H for hang, E for uncaught exception, L for logic error, and N for no observable failure.
We define the set of disruptive behaviors as D = {C, H, E}.

These functions capture fault execution, observability, and behavior, allowing us to formalize the interactions. We

assume, for simplicity, that faults f;, f; are distinct and coexist in the program.

5.2 Fault Interaction Types

We define an interaction relation 7 (f;, fj, P, T) that classifies the relation between two faults f; and f; in a program P

under a test suite T. This relation is central to our formal understanding of multi-fault repair.

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 19

¢ Independence. Faults f; and f; are independent if their effects are isolated, each fault is both visible and

functionally stable, whether it appears alone or together with the other.
I(fi, f5 P.,T) =indep & o(f;, PI{fi}].T) Ao(f}, P[{f;}].T)
A o(fi, P 531 T) Ao(f;, PILS £31.T)
A beh(f;, {fi}) = beh(fi, {fi. fi})
A beh(f;, {fi}) = beh(f;, {fi. fi})

Fault independence reflects the ideal scenario for debugging and repair tools. In this setting, the presence of

1

one fault neither masks nor alters the observable effect of another, ensuring that each fault can be localized,
understood, and addressed in isolation. This idealized case is the implicit assumption underlying many single-
fault APR systems and serves as a clear baseline for reasoning about the more complex, non-ideal scenarios
encountered in multi-fault programs, where interactions complicate fault localization and repair.

e Masking. Fault f; masks fault f; if it causes a failure that suppresses f;’s observability when both are present.

I(fi. f;; P,T) = mask &= o(fi, P[{fi}].T) A beh(fi, {fi}) € D = —o(fj, P[{fi. i}].T) @

Masking occurs when a dominant fault produces a disruptive failure, hiding the presence of another co-occurring
fault. This directly explains Noisy and Misleading Fault Localization: a tool might correctly localize and fix the
masking fault f; but be unaware of the masked fault f;, leading to an incomplete diagnosis and a brittle patch.
e Synergy. Faults f; and f; exhibit synergy if their individual, non-disruptive behaviors combine additively to

produce a new, emergent, and observable failure.
I(fi,fj,P,T) =synergy < —o(fi, P[{fi}].T) A~ (f;, P[{fj}]. T)
A (o(fi, PIL 31TV o(f PI{A £i31.T))

Fault synergy arises when the combined effect of f; and f; produces a failure, even though each fault is harmless

®)

or non-disruptive when considered on its own. This additive interaction complicates both patch synthesis and
patch validation, as a repair tool cannot simply address one fault at a time in isolation. Instead, a composite
patch is required to resolve the combined effect, and a traditional test-suite oracle would only report failure,
offering no insight into the underlying synergistic relationship between the faults.

e Cascading. Fault f; cascades to f; if it alters the program’s control or data flow such that f;, previously dormant,

becomes executed and observable as a result of f;’s presence.

I(fi,f;,P,T) = cascade <= =exec(f;, P[{fj}].T) A exec(f;, P[{fi. fi}].T) (4)

Fault cascading occurs when one fault, f;, triggers a chain reaction that activates another fault, f;, which was
previously dormant or unobservable. This highlights the transitive nature of fault propagation. It directly relates
to the Combinatorial Growth problem: a repair for f; might expose a new failure for f; in a different part of
the program, increasing the search space. Cascading also complicates the oracle problem, as a partially fixed

program may exhibit new failures, leading a naive oracle to reject a valid partial patch.

This formal model provides a vocabulary for our main thesis: that multi-fault APR is not a mere extension of
single-fault repair. The existence of these interaction types proves that the problem is not simply about fixing more

bugs but about managing their complex interdependencies. This formalization provides the foundation for building

Manuscript submitted to ACM

20 Omar I. Al-Bataineh

Attribute Independence Masking Synergy Cascading
Manifestation Both faults visible. Dominant masks other. Neither fault visible alone. One activates another.
Cause of Failure Individual faults. Single dominant fault. Combined effect. Transitive activation.
Repair Complexity Low (sequential). Moderate (re-localization). High (composite patch). Moderate (order-sensitive).
Impact on Localization Straightforward. Misleading (hidden faults). 1ll-defined (no single point). Complicates root cause analysis.
Impact on Oracle Clear pass/fail. Incomplete. Ambiguous (only combined failure). Ambiguous (new failures).
Impact on APR Single-fault tools work. ~ Requires iterative loops. Breaks single-fault assumptions. Repair order critical.

Table 3. Comparison of Fundamental Fault Interaction Types

new theoretical frameworks and engineering novel repair techniques that can orchestrate dynamic analysis, formal

reasoning, and multi-fault synthesis.

5.3 The Utility of Formal Fault Interaction Modeling

The formalization of fault interactions I is far from a purely theoretical exercise; it establishes the principled foundation
for guiding practical, large-scale multi-fault repair. By explicitly modeling interaction types (indep, mask, synergy, cascade),

we gain two intertwined benefits: enabling principled orchestration and supporting rigorous formal reasoning.

1. Enabling Principled Orchestration (Engineering Utility): The I relation acts as the control input for the orchestrator

framework, transforming the repair process from a naive search into an informed sequence of decisions:

e Optimal Repair Sequencing: The model determines the order in which repairs should be attempted. For example, a
fault f; that cascades to f; should generally be addressed before f;. Similarly, a masking fault f; must be fixed first
to reveal the true set of active faults, preventing incomplete or misleading patches.

e Targeted Validation: The interaction type guides the design of the validation process. For synergistic faults, the
orchestrator recognizes the need to search for a composite patch 7; , treating any single-fault patch 7; that does
not fully resolve the failure as a partial success rather than a failure to discard. This approach mitigates the inherent

ambiguity of traditional test-suite oracles.

2. Informing Formal Reasoning (Theoretical Utility): The formal definitions create a concrete bridge between program

defects and formal methods, enabling advanced reasoning beyond simple test-suite verification:

e Temporal Reasoning with LTL: Interaction types can be formally expressed as temporal properties using Linear
Temporal Logic (LTL), thereby enabling rigorous formal verification. For instance, masking can be precisely defined
as a requirement that a fix for f; must ensure the observability of f; whenever f; remains present in the system.
This ensures that a patch actually resolves a defect, rather than merely masking it.

o Structuring LLM Learning: The defined J types can serve as structured, temporal training patterns for LLMs. Rather
than training them purely on code diffs, we can train on decision-making tuples (e.g., (P, I = mask, f;, fj, Action =
Fix f; First)). This approach trains LLMs not only on synthesis but on principled decision-making informed by the

fault structure, moving them closer to predictable, reliable components within the Orchestrator.

In essence, by formally modeling fault interactions, we establish the external scaffolding that enables the powerful but

inherently unreliable LLM synthesis engine to operate within logically sound boundaries enforced by the orchestrator.

6 Formalizing Multi-Fault Patch Generation and Validation

Having established our conceptual model for fault interactions, we now formalize how these interactions guide the
generation and validation of patches. Unlike the single-fault paradigm, which often assumes a monolithic patch and
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 21

a binary oracle, multi-fault repair requires a more sophisticated approach that reasons about partial patches, their
composition, and a dynamic validation process.

We rely on the formal definitions from Subsection 2.5, where we introduced the set of faults F, the program P, and
the fault interaction relation 7 C F X F x R, which models interaction types such as masking and synergy. This model

is crucial for establishing a correct repair order and for interpreting the validity of partial patches.

6.1 Patches and Composition Semantics

Fixing a multi-fault program is not simply the sum of fixing individual faults; it requires the coherent integration of
multiple repairs. To capture this formally, we define a set of candidate subpatches, P = Py, Ps, ..., Pn, where each
subpatch #; is a localized change targeting a single fault f;. These subpatches have no standalone meaning: their

correctness emerges only through composition. We introduce an operator o to merge subpatches into a unified patch:
Tlcomposite = ProPro---0Py (5

The semantics of o depend on the patch representation (e.g., AST rewrites or instruction-level edits) and govern how
and whether one subpatch may interfere with another during composition.

The core challenge of this composition lies in managing patch interactions, which are direct consequences of the
underlying fault interactions. For example, a fix for a masking fault must be applied first to unmask the hidden fault;
applying the fix for the hidden fault prematurely would fail. This implies that the composition process cannot be
arbitrary. A naive parallel composition (e.g., merging all subpatches at once) would be effective only for independent
faults. For cascading or masking faults, a sequential composition strategy is required to preserve correct repair order.

In our framework, the fault interaction model 7 directly informs the composition strategy. It provides a partial order
on the faults, which we formalize in the next section, that dictates the correct sequence for generating and composing
subpatches. This ordered, incremental approach avoids the pitfalls of monolithic patch generation and ensures that
each repair step is semantically sound within the context of the remaining faults. The objective is to produce a coherent

Pecomposite that not only passes all tests but also semantically corrects the entire program.

6.2 The Multi-Fault Repair Process and Validation Oracle

Multi-fault repair is inherently an incremental process. A repair system R proceeds in phases, generating and validating
subpatches, each targeting a specific fault f; € F. A key challenge is the oracle problem: a simple pass/fail verdict
from a test suite T is insufficient when a program still contains unresolved, interacting faults. As we have argued, a
successful multi-fault repair strategy must be able to reason about and validate partial patches, which necessitates a
more sophisticated oracle mechanism.

To enable sound validation during this progressive repair, we rely on the notions of partial and composite correctness
oracles defined earlier. A subpatch is evaluated by a partial oracle, Opartial, Which assesses whether it constitutes a valid
intermediate fix. This oracle provides nuanced, diagnostic feedback essential for guiding the incremental repair process.

This process requires a formal notion of a valid partial patch that is grounded in fault-aware semantics. We assume
the repair process respects a partial order <7 over F, where f; <7 f; implies that f; should be addressed before f;
to avoid semantic interference. This ordering is crucial for handling interactions like masking and for ensuring the

correctness of intermediate steps.

Manuscript submitted to ACM

22 Omar I. Al-Bataineh

Definition 6.1 (Valid Partial Patch under Interaction-Aware Ordering). Let <7 be a partial order over faults F =
{fi,- .., fu} induced by the interaction relation 7. A subpatch pt; is considered valid for fixing fault f; in a program P if:

(1) It eliminates the faulty behavior directly attributed to f;.
(2) It does not adversely interfere with any previously validated subpatch pt; for faults f; such that f; <7 f;.
(3) It preserves the program state so that it does not hinder the detection or repair of any fault f; such that f; <7 fi.

This definition ensures that each repair step contributes to the overall goal without regressing earlier fixes or
compromising future ones. The interaction-aware ordering <y guarantees that fault interdependencies, such as masking
and synergy, are respected in both validation and repair sequencing. It is essential to note that a valid partial patch does
not need to pass all failing tests, as remaining faults may cause some; however, it must not introduce new regressions

or mask other issues. The correctness oracle then handles the final verdict on the entire repair, Ocomposite-

6.3 A High-Level Procedure for Orchestrated Repair of Multi-fault Programs

Building on the formalisms introduced in this paper, particularly the Gr model, we present a high-level procedure for
orchestrating multi-fault APR. This procedure provides a blueprint for future tools, integrating fault interaction analysis
with formal validation oracles to guide the repair process. We call this procedure OrchestratedRepair; it takes as input a
faulty program P, a set of faults F, and a set of correctness properties S (e.g., a test suite). To make the process concrete,

we formalize it in Algorithm 1, detailing the inputs, outputs, and iterative, feedback-driven logic that directs repair.

6.3.1 Principles of OrchestratedRepair. The logical steps of Algorithm 1 are governed by the G structure. The
generalized oracles (Opartial and Ocomposite) introduced in Subsection 4.2 are instantiated as specialized suboracles: the
halting oracle Oy, which checks normal program termination (resolving crashes or infinite loops/hangs), and the

output oracle Ogutput, which checks functional correctness. These oracles underpin three core algorithmic principles.

Principle 1: Sequence Optimization via Gr-Guided Topological Sort. The orchestrator defines the repair sequence
by ensuring all strict dependencies are respected. This is achieved via a modified topological sort over the directed
dependency sub-graph Gp = (F, Zmask U Zcascade)- Faults involved in Synergy («) are excluded from this sort and

treated as a single compound repair task.

(1) Priority Determination: Faults f; with an in-degree of zero in Gp are prioritized as root causes.

(2) Parallelization of Independence: The Independence relation f; = f; is explicitly excluded from the dependency
sort. All independent faults are flagged for concurrent, parallel repair (as checked by DependenciesResolved in
the algorithm), maximizing efficiency by leveraging the verified non-interaction.

(3) Strict Sequential Fixes: The sequence ¥ mandates that if f; — f; or fi — fj, the patch patch; must be successfully

validated (according to the criteria defined in Principle 3) before patch; is attempted.

Principle 2: Dynamic Suboracle Refinement and Isolation. To address fault interference, the orchestrator avoids relying
on a fixed, static partitioning of the test suite T. Instead, it constructs a dynamic suboracle tailored to each target fault f;,
inferred at repair time through targeted fault isolation. This approach ensures that validation focuses precisely on the

fault under repair, minimizing noise from unrelated failures.

e Isolation Context: For a given fault f;, the orchestrator executes P in the context where all partial patches Ipartial
for faults f; <7 f; have been applied. This execution effectively resolves upstream dependencies, isolating f; and
thereby unmasking its genuine fault symptoms.

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair

23

Algorithm 1 Orchestrated Multi-Fault Program Repair

Require: Program P, Fault set F, Correctness properties S
Ensure: A composite patch meomposite O failure

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:

PP
Hpartial <0
Fresolved < 0

: I « InferInteractionRelation(P, F, S)

: <y« DerivePartialOrder(7)

: Fqueue < TopologicalSort(F, <7)

. Opartial < SynthesizePartialOracles(F, 7, S)

: while Fyeue # 0 do

fi < PeekNext(Fqueue)
if DependenciesResolved(f;, Fresolved> <7) then
Teandidate <— GenerateSubpatch(P, f;)
if Validate (candidates Oéamal) then
P’ « ApplyPatch(P’, 7rcandidate)
Hpartial « Hpartial U {candidate }
Fresolved < Fresolved U {ﬁ}
Dequeue(Fqueue’ ﬁ)
else
I « RefinelnteractionModel(7, f;, Zcandidate)
Fyueue < Re-Sort(F, T)
continue
end if
end if
end while

Tlcomposite < Combine(npartial)
Ocomposite < SynthesizeCompositeOracle(S)
if Validate(”composite; Ocomposite) then
return 7composite
else
return ‘Failure’

end if

> Set of partial patches
> Set of faults fixed by partial patches
> Step 1: Infer Interactions and Ordering

> Step 2: Synthesize Partial Oracles

> Step 3: Iterative Patching

> Refinement Loop

> Step 4: Final Composite Validation

e Dynamic Test Set T]L_ : The resulting dynamic suboracle TJQ is defined as the subset of T whose failures persist

when executed in the Isolation Context. Dynamic slicing is then applied to the execution traces of Tf’_ to verify

that the observed failure origin correlates strongly and uniquely with the location of f;, confirming precise fault

isolation and localization for the repair task.

o Assertion Integration: Formal assertions extracted from bug reports and specifications are incorporated into T}_,

serving as high-precision validation points that guide and strengthen repair correctness.

Principle 3: Interaction-Aware Partial Patch Acceptance (A). The acceptance criterion for a partial patch patch,

explicitly accounts for predictable failures caused by known, unpatched downstream faults f;. We define A as a

conditional oracle, taking the fault interaction graph G as an explicit parameter, thus formalizing its dependency on

Manuscript submitted to ACM

24 Omar I. Al-Bataineh

Fault Type Subpatch Strategy Full-Patch Strategy Validation Purpose Oracle Source(s)

Disruptive Halting checks (timeouts, Combined Opait + Oouput Ensure termination and func- Termination provers, test
crash monitors) tional correctness outputs, crash reports

Independent One oracle per fault (asser- Oomput Validate fault-local fixes and User-provided test suite,
tion or output-based) isolate behavior inferred postconditions

Synergistic Compound sub-oracle over Ogutput + Ohalt Detect combined behavior or Test outcomes, user asser-
joint fault group non-decomposable fixes tions, joint failure analysis

Masked Oracle refinement guided by ~ Ooutput Reveal suppressed behavior Test logs, bug traces,
masking; dynamic toggling due to other faults patch experiments

Cascading Oracle refinement staged Ordered composite valida- Reveal dependent or emergent Patch ordering traces, dy-
with patch order tion using both oracles faults post-fix namic monitors

Table 4. Validation strategies across fault types, patch levels, and oracle sources.

the fault structure. A is the formal condition required by the Validate function in the orchestrator:
ﬂ(?fi,T,gl) — Ohalt(Pfi,T) A VteT, (Opass(Pfi,) = OpaSS(P*, t)) \Y Ounmasked(Pfia t, Gr).

This criterion holds when the patch eliminates non-termination (property Opaie holds) and, for every test ¢, the
outcome either matches that of the ground-truth program P*, indicating a correct fix for an isolated fault, or it satisfies
the Ounmasked property. The G; parameter is essential here: it determines the activation condition for Oypmasked, Which
allows A to accept Py, if and only if f; is a root cause whose fix intentionally reveals symptoms of a known, unpatched
downstream fault f; as dictated by a Gj-edge (— or =). This explicitly distinguishes correct intermediate fixes from
predictable failures in a unified, interaction-aware validation framework.

This formulation turns patch validation from a pass/fail measure into an interaction-aware consistency check, where
acceptance depends not only on passing tests but also on failing correctly according to the predictions of the G; model.

The formal components comprising the A criterion are defined as follows:

® Ohat(Py;, T): Ensures that applying P, eliminates abnormal termination (crashes) and non-termination (infinite
loops or hangs) on all test cases in T. The validity of this check is assessed via a composite approach: (1) dynamic
analysis (observing timeouts and crash monitors) and (2) static/formal analysis (leveraging techniques like
termination provers for decidable program fragments).

¢ Opass(P*, 1): Denotes that test ¢ passes on the ground-truth program P*. P* is defined as the program version
that satisfies the overall correctness properties S (the functional specification) and serves as the gold standard for
oracle comparison. In benchmarking contexts, P* is typically the developer-fixed version of the faulty program.

® Ounmasked (Py;» t, G1): Holds when test fails with an Ooutpy failure that is directly attributable to a still-unpatched
fault f;, and this failure is predicted by the G; structure (i.e., the presence of a Gj-edge like f; ~ f; or fi — f;).
This confirms that #y, has successfully revealed or isolated the subsequent fault, thereby mitigating overfitting.

The acceptance criterion A provides the formal foundation for partial patch validation. Table 4 serves as the
implementation blueprint for the orchestrator’s validation step, detailing how the interaction-aware acceptance logic
(criterion A) must be practically instantiated across the different fault roles defined by the G; model, specifying required
oracle sources and necessary patch strategies.

This OrchestratedRepair framework (see Fig. 3) is designed to guarantee robust termination and maximized utility
under practical constraints. The procedure is inherently iterative, but its primary, desired termination condition is the
successful validation by the final composite correctness oracle Ocomposite- In practice, the framework is also configured

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 25

Input: Program P and Test Suite T

lStatic + Dynamic + Al Analysis

Estimate fault set F,
relation 7, and <7

lFault—aware synthesis of Ogyp
Synthesize Sub-oracles Ogyp

lEach O; € Og,, targets a sub-fault

Run iterative APR on P using
Ogyb to generate pty, ..., pty
in accordance with <y

lGenerate and compose subpatches

Invalid = Refine estimation or subpatch synthesis

Compose and validate using
Ohalt and Ooutput

lValid = Final patch

Return patch,pposite

Fig. 3. Modular patch synthesis and validation workflow. Subpatches are generated iteratively based on <y and validated in
composition. Dashed arrow denotes refinement upon validation failure.

with a finite time budget, serving as a secondary termination condition. Should the time budget be exhausted before
a fully valid composite patch is found, the system is designed to report the complete, ordered sequence of validated
partial patches (Ilpartial). This capability offers a critical form of ‘best-effort’ repair, providing engineers with traceable,
non-regressing fixes for a subset of faults. By leveraging the G model to sequence and validate incremental repairs,
this framework elevates multi-fault APR from an intractable heuristic search problem to a structured, model-guided

engineering process, offering a path toward resilience and diagnosability in complex repair tasks.

6.4 Computational Feasibility and Design Rigor

The viability of the orchestrated repair framework mainly depends on ensuring the computational tractability of its core
operations, in particular, the inference of the interaction graph G and the rigorous instantiation of the interaction-aware
validation oracle. We demonstrate both the feasibility and the methodological rigor of these components, illustrating

how the abstract formalism developed in Sections 3.7 and 5 can be systematically instantiated in practice.

6.4.1 Tractability of Interaction and Partial Order Inference. The operation INFERINTERACTIONRELATION(P, F, S) aims
to derive the complete interaction relation R, consisting of Mask, Cascade, Synergy, and Independence. While the

full graph G; = (F, R) is theoretically desirable, enumerating all interactions incurs exponential blow-up in the worst
Manuscript submitted to ACM

26 Omar I. Al-Bataineh

case. For practical orchestration, only those interactions that impose a strict temporal dependency are required. This

motivates a constrained inference procedure.

Definition 6.2 (Constrained Interaction Graph Gy s,5). Let Ry, = {~>, —} denote the subset of Mask and Cascade
relations. We define the constrained interaction graph as Gy sup = (F, Rsup). The induced partial order < is the minimal
transitive closure of Ry,. This restriction is sufficient for sequencing because only Mask and Cascade interactions

introduce genuine precedence constraints; Synergy and Independence admit concurrent treatment during orchestration.

Proposition 6.1 (Polynomial-Time Constructability of G;,p). Let F be a set of N suspected faults. The constrained

interaction graph Gi s, can be inferred in time O(N? - |T| - Timerst), where |T| is the test suite size.

SKETCH. For each ordered pair (f;, fj), we test whether repairing f; alters the observability of f; under the test suite
T. This yields a dependency iff either a Mask or Cascade relation holds. The pairwise enumeration contributes the
O(N?) term, while test execution introduces the |T| - Timeres factor. Crucially, the procedure remains polynomial in N
and linear in |T|, in sharp contrast to the exponential space of all interaction subsets. In practice, multi-fault benchmarks

have small N, and modern FL techniques (e.g., FLITSR) allow pruning of implausible pairs, further mitigating cost. O

6.4.2 Rigorous Design and Practical Realization of the Partial Validation Oracle. Recall from Definition 3.4 that a partial
correctness oracle Oparriql is essential for assessing the incremental validity of a candidate patch in the presence of

remaining faults. We now formalize its operational realization within the orchestrated repair framework.

Definition 6.3 (Operational Partial Validation Oracle Oparsiar). Let U C F denote the current set of unfixed faults.
Given a candidate patch P for some f; ¢ U, the oracle Opgytiqr returns True iff the residual failures of the patched
program (P o $%) can be attributed solely to U. Formally,

susp’(fi) =0,

Opartial(P o Pks U, T) = True
Vfé¢U:susp'(f) <e,

where susp’ is a multi-fault-aware suspiciousness measure and € > 0 is a tolerance bound capturing the maximal
noise level admissible for non-faulty locations. In the strict setting, € = 0; in practical instantiations, € may be derived

empirically (e.g., from the distribution of susp’ over known non-faulty statements).

Proposition 6.2 (Algorithmic Realization of Opursiar). The oracle Oparyiar is algorithmically realizable by combining (i)
multi-fault localization metrics that minimize the misattribution of failing tests [42], and (ii) causal attribution of execution

traces. The operational realization yields a sound instantiation of the partial correctness oracle defined in Definition 3.4.

SKETCH. Executing the patched program P o P against T yields updated suspiciousness scores susp’. If all high-
suspicion locations correspond exclusively to faults in U/, and the location of fj is deemed resolved (susp’(fi) = 0), then
residual failures are attributable only to 9. This state guarantees that the Net Satisfaction Change (AS) is non-empty,
thereby satisfying the success criterion of the oracle and adhering to the monotonicity requirement of the overall
repair procedure (Definition 3.4). Recent Al-based approaches can further refine fault attribution by reasoning over
execution traces, offering auxiliary disambiguation. This ensures that Op4+iq is not merely a theoretical construct but

an implementable mechanism. O

The two results above jointly demonstrate that (i) dependency inference can be achieved within polynomial bounds,
and (ii) partial validation can be grounded in concrete heuristics without departing from the formal requirements.

Together, they provide the computational rigor necessary for orchestrated repair to be practically realizable.
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 27

6.5 Theoretical Properties and Open Challenges

Our proposed procedure provides a structured, model-guided framework for multi-fault program repair. Its practical
effectiveness relies on both foundational theoretical guarantees and inherent implementation constraints. We next

highlight the core theoretical limits that any concrete realization of OrchestratedRepair must still address.

6.5.1 Soundness and Completeness. Within our framework, soundness refers to the guarantee that a patch accepted as
a valid fix is indeed correct with respect to the full specification. Completeness refers to the ability of the repair system

to find a correct patch if one exists.

Proposition 6.3 (Soundness of OrchestratedRepair). The soundness of the OrchestratedRepair procedure is directly
dependent on the soundness of its oracles. If the composite oracle Ocomposite and the partial oracles Opgyiqr are sound (ie.,

they encode the full and partial specifications, respectively), then the entire orchestrated procedure is sound.

Corollary 6.1 (Undecidability of Perfect Soundness). Given that test suites provide only a partial specification and
program equivalence is undecidable, a perfectly sound oracle is generally impossible to achieve. Thus, our procedure, like

any other APR method, cannot guarantee a sound repair for all possible inputs.

The completeness of our procedure is even more complex. It depends on several factors: the completeness of the bug
report analysis for inferring F and 7, the completeness of the subpatch generation algorithm, and the termination of
the iterative search. Since bug reports are inherently incomplete and patch generation is a search over a potentially

infinite space, achieving completeness is not guaranteed.

6.5.2 Complexity and Termination. The procedure’s termination is not trivial. While a time budget can be used as a
hard limit, a more principled approach requires analyzing the computational cost of the core steps. As demonstrated in
Section 6.4 (Proposition 6.1), the constrained inference of the sequencing partial order <y is successfully achieved in
polynomial time (O(N? - |T| - Timerest)), resolving the feasibility concern.

However, the complexity of inferring the full, unconstrained interaction graph Gy (including all Synergy and Inde-
pendence relations) remains a significant open challenge. Characterizing all potential R interactions is computationally
intractable for even a moderate number of faults. This highlights a critical need for efficient heuristics and Al-driven
techniques to fully characterize 7 without resorting to the brute-force approach. Furthermore, the overall complexity of
OrchestratedRepair is ultimately dominated by the iterative process of patch synthesis and validation, which remains

exponential in the worst case due to the underlying search space of possible patches.

7 Principles for Evaluating Multi-Fault APR

The shift from single- to multi-fault automated program repair requires a fundamental rethinking of how success is
measured. Metrics commonly used for single-fault repair, such as patch correctness or plausibility based on a binary
pass/fail test suite, are inadequate for capturing the complexity of multi-fault scenarios. In this setting, a successful
patch may address only a subset of existing faults, interact with other faults, or introduce new, subtle regressions. To
account for these challenges, we propose a multi-dimensional evaluation framework that moves beyond a single notion
of success, providing a more nuanced and comprehensive assessment of multi-fault APR tools.

Developing such metrics is a critical prerequisite for future empirical work. By establishing this framework, we
provide a common language for the community to measure and compare progress, ensuring that empirical studies are

grounded in a precise understanding of the complexities inherent to multi-fault program repair.
Manuscript submitted to ACM

28 Omar I. Al-Bataineh

7.1 Evaluation Setting and Formal Notation

To ground our metrics in a realistic evaluation context, we formalize the setting in which a multi-fault APR tool is
assessed. We assume a multi-fault benchmark of programs with known ground-truth faults. Such a benchmark provides
the oracle needed to evaluate repair effectiveness beyond simple test-suite success.

Let D denote the benchmark, a finite set of faulty programs. For each program P € D, the associated ground-truth
fault setis F(P) = {fi, f2, . - -, fu}- Across the benchmark, the complete fault set is Frotal = Upep F (P). A successful
repair of a program P yields a corrected program P’ in which all faults in ¥ (P) are eliminated.

When an APR tool is applied to D, its results can be analyzed at the fault level, giving rise to two central sets:

® Fpatched: faults for which the tool generated a patch.
® Frixed: faults correctly repaired, where correctness means the fault is eliminated without introducing regressions,

as verified by a comprehensive oracle (e.g., test suite and human inspection).

These definitions provide the measurable foundation for our proposed metrics, ensuring they are both precise and

practically grounded, while enabling a rigorous and reproducible evaluation framework.

7.2 Proposed Multi-Dimensional Metrics

Our framework introduces a layered set of metrics to capture the nuanced performance of multi-fault APR tools. Unlike
conventional single-fault metrics, it moves beyond binary pass/fail assessments to measure success across multiple
dimensions: fault-level granularity, holistic program-level performance, handling of fault interactions, and tool efficiency.
These metrics are empirically grounded, relying on information naturally available from multi-fault, such as the ground
truth of faults and the outputs of repair tools. By adopting this framework, the research community can perform more
meaningful and rigorous comparisons, fostering deeper insight into the capabilities of repair tools. Table 5 presents a

complete overview, with formal definitions of each metric organized into distinct categories detailed below.

7.2.1 Fault-Level Repair Accuracy. These metrics provide a fine-grained evaluation of a tool’s performance at the
granularity of individual faults, which is crucial for distinguishing between a tool that partially fixes many programs

versus one that fully fixes a few.

o Fault Fix Rate (FFR): The percentage of individual faults correctly fixed across a set of multi-fault programs.
This metric serves as a more informative alternative to the traditional “correct patch” measure. For example, a
tool that repairs 10 of 20 faults in a program would not be deemed a failure but would yield a 50% FFR, granting
partial credit and rewarding tools that make substantial, if incomplete, progress. This measure is essential for

guiding the development of tools that address more defects, even when a complete fix is not achieved.

Per-Fault Precision and Recall: These metrics are adapted from information retrieval to assess the tool’s
effectiveness in addressing faults. Precision measures the proportion of correctly fixed faults among all faults for
which the tool attempted a patch. A high precision indicates that the tool’s localization and synthesis mechanisms
are accurate, avoiding spurious patches. Recall measures the proportion of correctly fixed faults relative to the
total number of existing faults in the benchmark. A high recall indicates a tool’s comprehensiveness in finding
and fixing all relevant defects. The trade-off between precision and recall can be used to distinguish between

conservative tools (high precision) and more aggressive, comprehensive ones (high recall).

Fault Fix Coverage (FFC): For a given program, this metric measures the fraction of distinct faults successfully
repaired. This metric enables per-program analysis. For instance, on a program with five faults, success is no

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 29

longer binary: fixing one fault yields 20% FFC, fixing three yields 60%, and so on. This granular view supports

more nuanced comparisons of tools that perform differently on the same program.

The granularity provided by these metrics is critical for understanding why tools succeed or fail in multi-fault

settings. They allow for a more detailed analysis than a simple binary outcome.

7.2.2 Program-Level Patch Success. These metrics provide a holistic view of a tool’s performance on a per-program

basis, complementing the fault-level view by measuring the tool’s ability to achieve a complete, working solution.

o Full Repair Rate (FRR): The percentage of multi-fault programs for which all faults were correctly fixed. This is
the most stringent measure of success, reflecting the tool’s ability to provide a complete and satisfactory solution
to the developer. It is the direct equivalent of the single-fault “plausible patch” metric, but applied to the far more
complex multi-fault scenario. A high FRR indicates a tool is not just finding isolated fixes but can manage the

entire repair process for a multi-defect program.

Partial Repair Rate (PRR): The percentage of programs with at least one fault correctly fixed. This metric
measures the tool’s overall reach. While a full repair is the ultimate goal, a partial repair can still be highly
valuable, reducing the developer’s workload and simplifying the remaining debugging process. A tool might
have a low FRR due to the difficulty of certain faults, but a high PRR would still demonstrate its practical utility.
o Patch Correctness: This metric measures whether the final patch successfully fixes all existing faults without
introducing regressions. Unlike the single-fault context where correctness is often implicitly defined by test-suite
passing, in multi-fault repair, it must be explicitly defined to ensure the final program satisfies all original
specification properties and does not introduce new bugs due to fault interactions. This metric is a direct response

to the overfitting problem magnified in multi-fault contexts.

These metrics are essential for assessing a tool’s capability to deliver a usable solution, going beyond isolated fault

fixes to capture whether the repaired program can be relied upon as a correct, stable, and developer-ready outcome.

7.2.3 Interaction-Aware Metrics. These advanced metrics are crucial for evaluating tools that claim to handle fault
interactions, moving beyond standard metrics to assess a tool’s ability to reason about complex dependencies. These

metrics are not feasible with single-fault benchmarks and are a core contribution of our framework.

e Fault Interaction Index (FII): This index quantifies how a patch for one fault affects the observability or
fixability of another. A tool’s FII can be measured empirically by comparing its performance across different
repair sequences. For example, if a tool fails to fix a set of faults in one order but succeeds in another, it indicates
that the tool’s strategy is sensitive to fault interaction, suggesting a high FII. A tool with a low FII is more robust
to these interactions, a desirable trait for any multi-fault repair system.

e Repair Stability: This metric measures whether the final program state is consistent regardless of the order
in which interacting faults are repaired. A high stability indicates that a tool’s repair strategy is robust and
independent of the order in which faults are addressed. This is a critical property for tools that are intended for

real-world use, where the order of bug reports or developer fixes may be non-deterministic.

These metrics provide unique and actionable insights into a tool’s capacity to handle the most challenging aspect of

multi-fault programs: the complex interaction between defects.

7.2.4 Execution Metrics. While not unique to multi-fault APR, these metrics are essential for comparing the efficiency
and practicality of different approaches. They form a vital bridge between theoretical effectiveness and practical utility.

Manuscript submitted to ACM

30

Omar I. Al-Bataineh

Table 5. A Multi-Dimensional Evaluation Framework for Multi-Fault APR

Metric

Description

Formal Definition

Fault-Level Repair Accuracy

Fault Fix Rate (FFR)

Per-Fault Precision

Per-Fault Recall

The percentage of individual faults correctly fixed
across all programs in a multi-fault benchmark.

The ratio of correctly fixed faults to all identified
faults that are addressed by a generated patch.

The ratio of correctly fixed faults to the total number
of existing faults in the benchmark.

[Ffixed!
FFR = [T
‘ﬁotal‘
.. It
Precisiony = M
I patched‘
— W_ﬁxedl

Recally = 7000

Program-Level Patch Success

Full Repair Rate (FRR)

Partial Repair Rate (PRR)

The percentage of multi-fault programs for which
all faults are correctly fixed.

The percentage of programs with at least one fault
correctly fixed.

{PePprr|All faults in P are fixed}|

_
FRR = 1PmFl

[{PePprF|At least one fault in P is fixed}|

PRR = [PmFl

Interaction-Aware Metrics

Fault Interaction Index (FII)

Repair Stability

A measure of how fixing one fault affects the observ-
ability or fixability of another.

Measures the consistency of a repair solution when
faults are addressed in different orders.

Quantified by observing changes in the failing
test suite after a partial patch is applied, indi-
cating masking or unmasking.

Assessed by comparing final patch behavior
across repair sequences.

Execution Metrics

Avg Time to Repair

Repair Attempts

Average time to find a plausible (partial or full) patch.

The average number of candidate patches or itera-
tions needed to find a successful fix.

ZPEPMF Time(P)

[PmFI

ZPEPMF Attempts(P)
[PmFI

AvgTime =

AvgAttempts =

o Average Time to Repair: Given the expanded search space, the time it takes for a tool to find a plausible patch

(partial or full) becomes a primary concern. This metric allows for a direct comparison of the computational

costs of different repair strategies, from brute-force search to more targeted, interaction-aware approaches.

e Repair Attempts per Program: This metric provides a proxy for the efficiency of the search algorithm. It

measures the average number of candidate patches or iterations needed to find a fix. Tools that can converge on

a solution with fewer attempts are more efficient and scalable. This metric is particularly useful for comparing

generative approaches with search-based ones.

By adopting this multi-dimensional framework, the APR community can move beyond simplistic pass/fail criteria to

enable more meaningful, rigorous, and nuanced comparisons of tools, ultimately advancing the state of the art and

pushing the boundaries of what automated repair can achieve in real-world, multi-fault programs.

8 Demonstration: G;-Guided APR Orchestration

As a proof of concept, the core contribution of our research agenda is to show the conceptual advantage of an GI-guided

APR orchestrator over traditional heuristic-based approaches. Using a representative multi-fault program, we illustrate

how the fault interaction graph GI offers a principled and verifiable basis for sequencing, generating, and validating

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 31

patches. By structuring the repair process around this graph, the orchestrator achieves greater efficiency, enforces

model-consistent correctness at each stage, and systematically mitigates overfitting that limits heuristic systems.

8.1 The Multi-Fault Program and Interaction Landscape

To illustrate the inherent complexity of multi-fault APR, we consider the target program P (Listing 2) alongside a failing
test suite T. The effectiveness of our OrchestratedRepair framework rests on the integration of several supporting
tools: (i) fault localization techniques (e.g., Ochiai, Zoltar, CFaults) to identify the initial fault set ¥ = {f1, f2, f3}; (ii)
formal verification tools, including termination provers (TP) such as AProVE or Ultimate Automizer, and assertion
inference engines (e.g., CPAchecker, Frama-C) to construct interaction-aware suboracles; and (iii) heuristic assistants
(e.g., CodeLlama, GPT-4) to generate initial candidate patches. With this setup, we show how Gy is inferred and
how candidate patches are systematically validated against oracles. This example demonstrates how our framework

transforms the multi-fault APR challenge into a structured, verifiable, and principled repair process.

// Initial Input: item_counts = [10, -1, 20], length = 3

2 int calculate_inventory_value(intx item_counts, int length) {
3 // f1 (Dual Role): Off-by-one array access (<= length instead of < length)
// This single fault has two effects: (1) OOB write at i==3 (Masking/Crash),
5 // and (2) Data corruption (item_counts[1] from -1 -> @) which Cascades to f2.
6 for (int i = @; i <= length; i++)

7 item_counts[i] = item_counts[i] + 1;

9 // f2 (Cascading): Division by corrupted value

10 int total_value = 0;

11 for (int i = @; i < length; i++)

12 if (item_counts[i] % 5 == @) // triggered because f1 corrupted item_counts[1] to @

13 total_value += 100 / item_counts[i]; // potential division by zero

// f3 (Semantic): Incorrect default initialization for large, zero-valued inventory
16 if (length > 2 && total_value == 0)

17 total_value = -1;

19 return total_value;

20| }

Listing 2. Multi-fault snippet illustrating a dual-role fault f; (Masking/Cascade), a Cascading fault f;, and a masked semantic fault f;.

Table 6. Fault taxonomy and interactions (as used in Gy).

Fault Symptom Notes on interaction / manifestation
fi OOB / Corruption | Off-by-one write: (1) Cascades to f, via data corruption. (2) OOB crash Masks f; and f;.
fa Division-by-Zero | Triggered by fi’s corruption; when triggered it aborts execution and masks f;.
f Semantic Error | Does not influence fi, f2, but manifests only if execution reaches its check (i.e., not masked).

The interaction analysis (the InferInteractionRelation primitive in Algorithm 1) yields the fault interaction graph

Gr shown in Fig. 4. In practice this inference combines differential execution, dynamic slicing, and targeted checks
Manuscript submitted to ACM

32 Omar I. Al-Bataineh

Cascade —

AY 7

Mask ~» \\ ,IT\LISI\ ~

Fig. 4. Fault interaction graph Gy: fault f; cascades to f, while f; and f; mask f; via early termination. Cascade interactions use
solid arrows (—), mask interactions use dashed gray arrows (~).

of temporal/assertional dependencies to confirm whether one fault’s execution or data flow influences another’s

manifestation. The resulting Gy is the central artifact guiding our repair orchestration strategy.

8.2 Contrasting Heuristic and Orchestrated Repair

Contemporary LLMs tools such as GPT-4, Codex, and CodeLlama have shown impressive results in single-fault APR.
While LLMs can sometimes generate plausible patches for small multi-fault programs, their success is heuristic and not
systematic. LLMs are not trained on Gr-aware fault structures and lack the formal machinery to perform interaction
analysis or use criterion (A. Their reliance on test-passing as the primary objective renders them prone to accidental

overfitting, reinforcing the necessity of our structured, model-guided orchestration approach.

8.2.1 Heuristic Analysis and the Overfitting Trap. Conventional APR tools such as GenProg, TBar, or Anglix are
inherently unaware of fault interactions. These tools typically treat the entire failing test suite T as a monolithic entity
and optimize for a single test-passing objective. Consider the program in Listing 2: here, fault f; (an off-by-one or
out-of-bounds write) causes an immediate program crash or abort. As a result, the initial test suite T reports only this
crash symptom, effectively masking subsequent faults. The tool therefore begins by generating a candidate subpatch
P, for example, correcting the loop bound to i < length. Once Py, is applied, the program advances beyond the crash

point, which in turn reveals previously masked faults. Specifically:

o Unmasking dependent faults: Correcting f; prevents its data corruption, thereby removing state dependencies
that conceal f,. This exposes f;’s division-by-zero failure if f, remains present.
o Lifting termination masks: Preventing f;’s premature termination removes masking effects on downstream code,

thereby revealing f5’s semantic error, even in cases where f; might still be masked by f,.

This interplay of faults demonstrates the core challenge of fault interaction: repairing one fault can fundamentally
alter the symptom space. The heuristic validator, however, observes an increase in the total number of failure symptoms,
from a single crash to multiple output failures, and, lacking a principled criterion such as A, rejects Py, as introducing
regressions. This rejection forces the repair process into an intractably large search for a single composite fix P4 5, 51
The resulting search space is combinatorially complex and prone to producing high-scoring but incorrect overfitting

patches, highlighting a fundamental limitation of conventional heuristic-based APR.

8.2.2 Orchestrated, Gr-Guided Repair. Our orchestrator, guided by the dependency order <y from Gy (Fig. 4), reframes
repair as structured optimization of sequential and parallel patching, with each candidate validated against a suboracle.
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 33

(1) Root Cause Prioritization (Effectiveness): The graph clearly dictates the priority. The cascading dependency f; — f;

@)

3

~

ensures that the root cause f; must be repaired first, ensuring its corrupted state is corrected before addressing f;.
Interaction-Aware Validation (Criterion A): This criterion represents the key distinction of our approach: partial
repairs are not discarded prematurely. For example, the fix Py, is accepted if it meets two conditions: (a) it
satisfies its fault-specific halting oracle Opayt, and (b) it fulfills the unmasking requirement A. The latter demands
a change in failure mode: for any test case t that previously resulted in a non-terminating error (Crash/Abort),
the patched program must now produce either a terminating failure (incorrect output) or a Pass. This shift
ensures that the masking effect is removed, achieving the objective Oynmasked by converting a disruptive crash
into an observable semantic failure.

Decoupling and Parallelization (Efficiency): The causal independence of f; (f; = fj, ;) indicates that Pf; can be
synthesized in a parallel repair task, completely unaffected by the outcomes of the f; and f, fixes. However, due
to the f;, f; ~ f3 masking edges, the final validation and integration of 5, must be deferred until f; and f; are

verifiably repaired, as shown in §8.3.

8.3 Formalizing Patch Validation with Suboracles

To ensure verifiable correctness for both partial and composite repairs, the orchestrator constructs fault-specific

suboracles derived from the initial test suite T and the interaction properties established during Gy inference. These

suboracles allow the orchestrator to validate each repair incrementally, explicitly avoiding the false-rejection and

overfitting errors that cripple heuristic APR in multi-fault scenarios.

8.3.1

Suboracle Construction for Partial Patches. The orchestrator tailors the validation strategy dynamically and

systematically according to the specific type, severity, and interaction characteristics of the fault being addressed:

(1) Halting oracle (Opqy) for disruptive faults (fi, f2): The halting oracle ensures that a repaired program terminates

@

~

normally, even if the final output remains incorrect due to remaining faults. This is a prerequisite for accepting

any partial repair for disruptive faults. For the root-cause OOB fault fi, a candidate patch P must satisfy:

Onatt(Pfis Tfi) A Onare (P, Tp;)

where T, denotes the set of test cases that fail due to fault f;’s manifestation. This check verifies that patch,
resolves both its direct crash symptom (f;) and the cascading crash (f2) that would occur if the data corruption
persisted. Formal tools like termination provers or lightweight assertion checkers (e.g., Frama-C, using inferred
assertion assert(i < length) ;) formally confirm that the program state leading to the crash is now unreachable.
Unmasking oracle (Oynmaskea) for masking interactions (fi ~ f3): The core function of the A criterion is imple-
mented via Oynmasked- We define the program status function Status(P, t) for a test case t as returning one of
three outcomes: Crash (non-terminating failure), OutputFail (terminating failure with incorrect output), or Pass
(terminating success). A patch for a masking fault (like) is accepted if it resolves the disruptive masking

behavior, even if the overall output remains incorrect due to unmasked faults. This is formally defined as:
Ounmasked (Pf;, 1) &= (Status(P o Pr;,t) € {OutputFail, Pass}) A (Status(P, t) = Crash)

That is, for any test case t that previously caused a Crash in the original program P, the patched program P o P,
must now yield a terminating status (OutputFail or Pass). For the f; fix, this oracle accepts #; because it converts
the initial single Crash symptom into observable OutputFail symptoms caused by f; and f;.

Manuscript submitted to ACM

34 Omar I. Al-Bataineh

(3) Output oracle (Oouspur) for semantic faults (f;): The output oracle validates a patch by checking whether the
program exhibits the expected input-output behavior defined by T. This oracle is applied locally and conditionally
according to the < order. For the independent fault f;, its validation is deferred until the preceding disruptive

faults (fi and f;) are neutralized. We first define the intermediate, partially corrected program P’:
P =PoPy o0Py.
The patch Py, is accepted if applying it to P’ satisfies its local output oracle:
Ooutput (P’ 0 P, Tpy).

The G; guarantee of independence (f; = fi, f3) justifies this sequence: since f;’s fix is guaranteed not to re-

introduce fi or f;, its validation is sound when conducted on the stable, intermediate program P’.

This modular approach to suboracle construction enables the orchestrator to validate partial correctness for sub-

patches, thereby preventing the false-rejection errors that cripple heuristic APR in multi-fault scenarios.

8.3.2 Integrated Validation for Composite Patches. Once all subpatches P, Pp,, and P, have successfully passed their

corresponding suboracles, they are composed into the final repair:
Teomposite = P © P 0 P
The final validation step applies an integrated oracle:
Ofinal (ﬂcomposite, T) = Ohalt(ﬂcomposite, T) A Ooutput (”compositea T)A

This ensures that the repaired program terminates correctly and produces the expected output for the entire test suite
T. By building the final repair through validated subcomponents, the orchestrator avoids the combinatorial complexity
of searching for a single composite patch Zcomposite> achieving repairs that are both efficient and sound.

This formalization highlights how the core contributions, the interaction graph Gr and the criterion A, recast multi-
fault APR as a structured and verifiable process. The interaction graph Gy provides the foundation for decomposing an
otherwise intractable monolithic search space into an ordered set of manageable subpatch tasks. The criterion A acts
as the guiding principle that enables the orchestrator to avoid the false-rejection trap of heuristic validation. Together,

these components yield an orchestration process that produces efficient, verifiable, and non-overfitting repairs.

9 A Forward-Looking Research Agenda: The Collaborative Orchestrator Paradigm

We envision the future of multi-fault program repair as guided by a collaborative orchestrator, a unifying process
that coordinates synthesis, validation, and analysis across multiple interacting components. This paradigm reframes
PROGyr not as the pursuit of a single static patch, but as an adaptive process of coordination and refinement shaped by
a central reasoning architecture. The orchestrator’s goal is to increase the chances of producing correct and general
repairs by managing fault dependencies, interpreting diverse validation feedback, and bringing together the strengths
of different repair mechanisms.

The central contribution of this vision lies in shifting from isolated repair attempts toward structured collaboration.
Rather than treating each repair tool as an independent solver, the orchestrator treats them as complementary partici-

pants in a coordinated process. It continuously integrates information from multiple oracles, analyses the structure of

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 35

the fault interaction graph Gy, and adapts repair strategies in response to emerging dependencies and partial successes.

In doing so, it replaces ad hoc search with deliberate reasoning over the evolving space of possible repairs.

Conceptual Definition: The Neuro-Symbolic Engine. At the core of this paradigm lies the neuro-symbolic engine, a
reasoning architecture that unites structured, formal analysis with adaptive synthesis. It provides a principled mechanism

through which deductive constraints and exploratory reasoning operate in concert to guide repair.

(1) Symbolic Component. This layer realises the theoretical framework developed in this paper—the fault in-
teraction graph (Gy), the partial oracle (Opartial), and the composite oracle (Ocomposite)- It governs dependency
management, sequencing, and the verification of candidate patches against formal constraints. Through this layer,
the orchestrator maintains soundness and ensures that repairs evolve consistently with interaction semantics.

(2) Adaptive Component. Complementing the symbolic layer, the adaptive component provides the flexibility
required to explore and refine candidate solutions within large, uncertain repair spaces. It interprets behavioural
traces, re-evaluates fault hypotheses, and proposes candidate patches under the guidance of the symbolic
framework. Its purpose is not to replace formal reasoning, but to extend it—to operate effectively where the

search space defies exhaustive analysis.

These components operate in a continuous reasoning cycle where the symbolic layer constrains and interprets
adaptive exploration, while the adaptive layer extends the search frontier under symbolic guidance. This interaction
defines the neuro-symbolic engine as the conceptual and architectural core of the collaborative orchestrator paradigm. It
transforms multi-fault repair from isolated attempts into a coherent process of hypothesis, validation, and refinement,

grounded in formal reasoning yet flexible enough to address the evolving complexity of real-world software.

9.1 The Collaborative Orchestrator Architecture

The foundation of this research agenda is the collaborative orchestrator architecture, the conceptual blueprint illustrated
in Fig.5. This architecture formalizes the proposed multi-agent system, positioning a centralized, neuro-symbolic engine
(the orchestrator) to manage the interplay between specialized components: Formal Methods (FM), Fuzzing, and APR.
The orchestrator’s intelligence is derived from its ability to use the Gr model as its decision logic, allowing it to
dynamically translate abstract theoretical constraints (e.g., fault dependencies) into concrete execution guidance (e.g.,
targeted properties for FM or constrained templates for APR). This systematic integration defines the three core axes of

our forward-looking research agenda, detailed in the following subsections.

9.2 Inferring and Characterizing the Fault Interaction graph G;

The orchestrator’s viability is fundamentally dependent on an accurate, dynamic model of G;. Since G cannot be fully
known a priori, its inference and characterization represent the first core research challenge. We outline a trajectory in
which the orchestrator’s neuro-symbolic reasoning core synthesizes G; by integrating evidence from complementary

analysis techniques to not only detect interactions but also classify their type.

9.2.1 Gathering Multi-Modal Evidence for Interaction. The orchestrator integrates partial insights from multiple
specialized analyses to form a robust hypothesis for the existence of an edge (f;, fj) € Gi. Let P denote the multi-fault
program, P[pt] the program with partial patch pt applied, and Fail(P, t) the Boolean outcome of executing P on test .

e Dynamic Analysis via Incremental Test Outcomes. This method detects fault interactions by applying
a partial patch pt; to fault f; and observing changes in the failure profile of fault f;. An edge (f;, fj) € Gr is
Manuscript submitted to ACM

36 Omar I. Al-Bataineh

confirmed when such patch application alters f;’s failure outcomes, indicating interaction between faults:
Evidencepy,(fi, fj) < 3t € T : Fail(P[pt;], t) # Fail(P,). (6)

This approach provides measurable evidence of fault interaction by quantifying changes in the failure spectrum.

It constitutes a key foundation for 7 inference, enabling the orchestrator to prioritize repair sequencing.

Static Dependency and Symbolic Analysis. Structural coupling is suggested by overlapping control-flow
or data-flow dependencies between the program regions associated with faults f; and f;, reflecting potential
semantic correlation. Let Def-Use(f) and Use-Def(f) be the set of program locations involved in the definition

and use chains of f. Simultaneous activation is suggested when these dependency chains intersect:
Evidencesgyic (fi, fj) < Def-Use(f;) N Use-Def(f;) # 0. (7)

This analysis provides a high-confidence structural prior for the orchestrator, linking static program structure to
fault interaction by revealing shared definition—use chains that imply semantic and execution coupling.

e Execution Trace Clustering. This method performs lightweight failure analysis by clustering failing execution
traces based on shared dynamic profiles, such as overlapping stack traces, control-flow paths, or contexts. Let
3(f) denote the set of failing traces covering the location of fault f. An interaction between f; and f; is supported
when these faults co-occur within the same failure contexts, indicating potential temporal coupling:

() NI

EH VT

where 7., is a configurable co-occurrence threshold. This technique provides robust empirical evidence of fault

®)

Evidencerrace (fi, fj) &

interaction by correlating failures that are proximate in execution space or time, enabling the orchestrator to

infer causal relationships without exhaustive static analysis.

9.2.2 Characterizing I for Strategic Sequencing. Detection of fault interaction is insufficient; effective orchestration
requires classifying the interaction type, which dictates optimal patch sequencing and resources. The orchestrator’s
neuro-symbolic core classifies each edge (f;, fj) € Gr by determining which formal type (e.g., mask, synergy) in Section 5
matches the collected multi-modal evidence. This classification maps the observable dynamic consequences, captured
by the set of failing tests Tr,ii (P) = {t € T | Fail(P,)}, to the underlying properties (visibility, execution, behavior)

established in Section 5. The key observable signatures for this classification are summarized in Table 7.

Formal Verification for Causal Inference. While dynamic analysis provides high-confidence evidence of correlation
(Tfai exhibits differential behavior, a quantifiable alteration in the program’s failure spectrum after applying a partial
patch), formal verification is necessary to establish causality and achieve maximum inference accuracy. The formal
definitions of masking and cascading can be directly translated into properties verifiable via LTL (Linear Temporal

Logic) or other program verifiers [6, 9]. For example, masking (f; — f;) can be verified by asserting:
FM7(fi = f;) & V(P[{f. f;}]. ~AssertedFailure(f;) | AssertedFailure(f;))

where V denotes a successful verification, and AssertedFailure(f;) is a formal specification of the desired failure
post-condition of f;, typically derived from contextual artifacts such as the failing test oracle output, the bug report’s
expected behavior, or an explicit fault assertion model. When the verifier confirms causality, the orchestrator elevates

the confidence score of the corresponding edge in Gy to its maximum value, overruling conflicting heuristic evidence.

Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 37

Table 7. Classification of Fault Interaction Types and Required Orchestration Strategy.

Interaction Type Notation Dynamic Inference Signature Orchestrator Strategy

Independence fi=fi Failures of f; unchanged after patch; Concurrent repair; independent APR

Masking fi~ f; patch; hides a subset of f;’s failures: Prioritize f;; 7 dictates sequence; re-localize f;
Synergy fief Individual patches fail; joint succeeds Mandate composite patch synthesis

Cascading fi—=fi patch; fixes f; but introduces new failure f; Strict regression; re-localize and re-synthesize f;

Inference Complexity and the Accuracy-Cost Trade-off. Achieving high-accuracy inference must be balanced against
computational cost. As formally established in Section 6.4, the necessary pairwise execution cost for determining any
potential interaction is bounded by the tractable polynomial O(N? - |T|), where N is the number of faults and |T| is the
test suite size. However, accurately classifying the interactions, specifically disentangling synergy and independence,
requires analysis whose complexity approaches undecidable or exponential bounds, a challenge noted in Section 6.5.
Therefore, the orchestrator adopts a resource-aware strategy: lightweight heuristics such as trace clustering generate
initial Gy priors and establish the partial order G ¢,5. This enables the selective application of costly, high-accuracy
verification to only those fault pairs with ambiguous or critical signatures (e.g., high potential for synergy). This explicit
trade-off between classification accuracy and cost defines the core optimization problem addressed by the orchestrator’s
dynamic resource-allocation engine.

These classification rules, backed by the confidence scores derived from the multi-modal evidence and formal

verification, provide the foundation for the orchestrator’s sequence planner:

¢ Rule-of-Priority (Masking): If f; — f; is inferred, the Orchestrator enforces that pt; must be generated and
validated before any patch attempt for f;, as fixing f; is necessary to establish the correct context for localizing f;.
e Rule-of-Synthesis (Synergy): If f; < f; is inferred, the Orchestrator constrains the generative APR agent
to produce a single, composite patch pt; ; addressing both faults simultaneously, since the individual fixes are

semantically incorrect or functionally incomplete.

The outcome of this stage is a weighted, directed graph Gy that encodes both the existence and type of fault interactions.
This graph provides the critical domain knowledge for the orchestrator’s reasoning, guiding the subsequent synthesis

and validation phases with maximal efficiency.

9.3 Orchestrating Interaction-Aware Synthesis

A core principle of the orchestrator is the utilization of the model Gy as its decision logic, transforming repair from a

blind search into a deliberate sequence planning problem.

e Sequence Determination: The orchestrator must infer the current graph Gy (potentially using initial multi-fault
localization) to determine the optimal repair sequence. For example, if fault f; masks fault f;, the orchestrator
should prioritise generating a patch for f; first, thereby unmasking f; and enabling its subsequent repair.

o Targeted Synthesis: Rather than permitting a high-expressiveness tool (such as an LLM or evolutionary APR)
to generate patches indiscriminately, the orchestrator uses G; semantics to constrain synthesis. For instance, in
the case of synergy faults, it may instruct an LLM to produce a single composite patch addressing both faults
simultaneously, instead of generating two distinct subpatches.

o Agent Integration: The orchestrator serves as the integrative core connecting specialised repair agents. It
routes the problem: the Gr-graph and partial test suite are passed to a Sequence Planner, which determines the

Manuscript submitted to ACM

38 Omar I. Al-Bataineh

Fuzzing (e.g., AFL++) FM (e.g., CPAChecker)

Targeted Seeds

T: ted P ties
Failing Traces Provable CEs, argeted Froperties

Program Failure SE Artifact / Diagnostic Data

LLM Orchestrator (ChatGPT)

Self-Learning & Refinement

Repair Strategies Candidate Patches

APR (e.g., GenProg)

Fig. 5. The collaborative orchestrator paradigm: A conceptual architecture for multi-fault APR that utilizes the formal model Gr
(Interaction) as its decision logic to manage repair sequencing and employs multi-modal validation (FM, Fuzzing) to constrain patch
synthesis against fundamental limits (overfitting).

required patch type and fault location, then directs this to a Synthesis Engine (e.g., an LLM or traditional APR

tool). This maximises the efficiency and focus of each agent.

9.4 Multi-Modal Validation Against Fundamental Limits

Our formal analysis reveals that overfitting and ambiguous oracle feedback are inherent and persistent challenges in
multi-fault programs. The orchestrator addresses these challenges by supplanting the traditional single, weak test oracle
with a multi-modal, layered validation system, a principled architecture that integrates complementary verification

mechanisms to robustly guide patch synthesis and ensure correctness under complex fault interactions.

¢ Bridging Synthesis and Verification: This agenda calls for hybrid approaches that combine the expressiveness
of generative tools (LLMs) with the rigour of structured validation (formal methods, FM). The LLM generates
plausible patches, but FM components, guided by the model G, filter them. For example, the G; model can
provide precise properties (e.g., LTL assertions) that must hold when f; is fixed, ensuring f; remains unbroken.
o The Fuzzing/FM Synergy: Patches passing FM checks are further tested via interaction-aware fuzzing. This is
not a blind search; it is guided by formal counterexamples and G;-model knowledge of dependency hot-spots.
This closed-loop (FM + Fuzzing) — Validation synergy yields the strongest available oracle, reducing the risk of

overfit patches that satisfy only an initial, weak test suite.

Partial Patch validation: The Orchestrator must manage the validation of subpatches or partial fixes, a central
challenge we previously identified [5]. This demands assertion-based oracles and formal property checking to

certify a subpatch’s correctness relative to remaining faults, ensuring subsequent repair steps are not invalidated.

9.5 System Dynamics and Implementation Tenets
To address concerns regarding computational cost, we clarify the dynamic and collaborative nature of the orchestrator.

e Collaboration over Replacement: The orchestrator embraces collaboration rather than replacement. It or-

chestrates existing, highly optimized APR tools (e.g., GENPROG, TBAR, ANGELIX) and specialized verification
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 39

engines (formal methods, fuzzing) as cooperative agents within a multi-fault environment. This strategy avoids
the prohibitive cost of building a monolithic repair system and leverages decades of single-fault APR research.
e Dynamic, Context-Aware Execution: Although the architectural model depicts a complete feedback loop,
execution is inherently dynamic. The orchestrator uses the inferred interaction graph Gr and contextual factors,
such as fault criticality, resource budgets, and fault type, to determine the optimal execution path. For example, a
low-criticality fault might trigger only a rapid LLM <> APR < fuzzing sub-cycle, bypassing the costly FM step.
Conversely, a synergy fault in a safety-critical system would require the full LLM < FM < APR « fuzzing loop.
¢ Enabling Parallelism: Centralized orchestration enables parallel execution of independent repair cycles. For
instance, while the resource-intensive LLM <> FM loop validates a patch for fault f4, a less costly LLM < fuzzing
sub-cycle can concurrently run targeted interaction tests to refine Gy for a separate, unmasked fault fz. This

parallelism is essential for managing computational complexity and ensuring practical viability.

This dynamic orchestration ensures computational resources are deployed efficiently, reserving high-assurance

validation steps for contexts where fault criticality and interaction complexity justify the additional cost.

9.6 The Iterative Orchestration and Adaptive Control Loop

The orchestrator’s primary function is to realize the monotonicity requirement (Definition 3.4) by operating as a
continuous feedback system. This systemic approach is necessary to overcome the undecidable complexity of fault
classification, ensuring that all decisions are dynamically anchored in the formal constraints of the graph Gr.

The entire system operates in a continuous, monitored cycle designed to maximize data utility. This cycle is formally
defined as: Discovery (Fuzzing) — Diagnosis (G Inference) — Synthesis (LLM/APR) — Validation (FM/Fuzzing). Every
outcome, including successful patches, failed attempts, and formal counterexamples, is captured and used to refine the
orchestrator’s planning heuristics and its knowledge base for future iterations.

This iterative process, governed by the established partial order <; and the stringent requirements of the partial
and composite oracles, represents a principled architectural evolution for multi-fault APR. It is the logical successor to
reductionist single-fault methods, leveraging our formal understanding of theoretical limits and interactions to define a

rigorous, forward-looking research agenda for the field.

10 Related Work

Automated program repair builds on decades of research in fault analysis, fault localization, and program transfor-
mation. Each of these areas has contributed valuable methods for detecting faults, reasoning about their behavior,
and constructing candidate repairs. Yet a persistent gap remains. Existing work often addresses only fragments of the
problem, such as identifying fault interactions, isolating defects, or generating candidate fixes, without providing a
principled way to integrate these elements into a coherent repair process. This gap becomes especially critical when
faults interact, since such interactions can render isolated fixes ineffective or even detrimental. In this section, we review
the most relevant efforts in these areas and show how their limitations, simplifying assumptions, and incomplete fault

semantics motivate the need for a formal framework and the orchestrated repair paradigm developed in this paper.

10.1 Formal Models of Fault Interaction: The Missing Link for Repair

The complex phenomenon of fault interactions, where one defect’s manifestation or repair influences others (e.g.,
masking or cascading), has been a significant and well-documented challenge in program analysis and dependability

Manuscript submitted to ACM

40 Omar I. Al-Bataineh

research [11, 12, 43]. Evidence strongly shows that disregarding these interdependencies leads to an incomplete
understanding of system behavior and severely diminishes the efficacy of analysis techniques. However, previous formal
analyses and empirical studies have focused primarily on the detection or categorization of these interactions. Crucially,
they have not offered a structured, actionable framework to specifically manage their profound impact on orchestrating
multi-fault repairs. That is, they establish that f; affects f;, but do not provide the logic for a repair engine to decide
when to fix f; or how to validate the fix for f;. Our work fills this theoretical void by introducing the formal relation 7,
a mechanism designed not merely for observation, but to provide precise, repair-guided semantics that inform sequence

planning and validation, thereby bridging the gap between interaction analysis and automated repair orchestration.

10.2 Multi-Fault Localization: Providing Locations, Missing Semantics

Considerable research efforts have extended fault localization (FL) from single-fault scenarios to multi-defect con-
figurations, utilizing technologies such as logical inference [2, 36], genetic algorithms [44], and linear programming
[10]. These advancements in Multi-Fault Localization (MFL) are crucial for identifying the set of suspicious entities
F={fi, f5 ..., fn}. However, they typically output an unordered set or ranked list of locations without characterizing
the semantic relationships between these faults. The output of MFL methods (the nodes of the 7 graph) is thus necessary
but fundamentally insufficient for multi-fault repair. Repair requires deciding which fault to fix first and what type of
patch is required (e.g., a composite fix for synergy). By integrating MFL results as the initial input for constructing our
formal graph of fault interactions, our framework can semantically enrich the understanding of these localized faults,

transforming a mere list of locations into a principled repair sequence plan.

10.3 Conventional APR: The Failure of the Reductionist Paradigm

Conventional APR tools, such as GENPROG [26], ANGELIX [30], and TBAR [28] rely on various techniques (e.g., genetic
algorithms, SAT/SMT solving, templates). The unifying and critical assumption among these methods is the reductionist
view that multi-fault programs can be fixed by repeatedly applying single-fault repair techniques, effectively assuming
fault independence and compositionality. As we formally argue in Section 2.3, this assumption is invalid for the general
case of PROGyr. When faults exhibit masking or synergy, a patch for f; may invalidate the localization for f;, or a
correct partial patch is rejected by the oracle, leading to infinite loops or incorrect termination. Thus, these tools fail on
principle for interacting faults, not due to implementation flaws. Our framework is specifically designed to overcome
this inherent limitation by introducing an Orchestrator layer that is founded on the 7 model, thereby managing the

non-compositional behavior of interacting faults.

10.4 LLM-Based Repair: The Necessity of Principled Orchestration

The advent of Large Language Models and pre-trained code models (e.g., CodeBERT [13], DeepFix [19], and generative
models) has demonstrated a powerful, flexible capability for code synthesis. These tools often generate fixes without
explicit fault localization or templates, and their impressive contextual understanding makes them capable synthesis
engines for complex edits. However, as noted in our analysis of fundamental limits, LLMs are statistical models that
operate as “black-boxes”, lacking a formal mechanism for: (1) Verifying a patch against formal properties (like program
equivalence, termination, or semantic correctness), and (2) Systematically guiding the multi-fault repair process based
on the logic of fault interaction 7. This critical lack of principled control is what necessitates our orchestrator paradigm.
Our framework does not seek to replace LLMs but to leverage their high-expressiveness synthesis capability as a

component within a structured loop. The orchestrator applies the formal logic derived from 7 to manage the LLM’s
Manuscript submitted to ACM

Foundations and Challenges of Multi-Fault Program Repair 41

inputs and outputs, providing the necessary semantic scaffold, reasoned sequence planning, and formal assurance that

are currently absent in purely data-driven APR methods for complex multi-fault scenarios.

10.5 Formal Methods in Single-Fault APR: Constraints of Specification Availability

The inherent limitations of purely test-driven validation in APR, particularly the risks of overfitting and the absence of
strong correctness guarantees, have long motivated the integration of Formal Methods (FM). Prior research has explored
the use of FM to constrain the repair search space or enhance validation, primarily by incorporating specifications
beyond finite test suites. However, these applications remain fundamentally constrained by two factors: their restriction
to the single-fault paradigm and their dependence on the availability of suitable formal input.

o Reliance on explicit specifications. Approaches such as [14] employ pre-existing assertions or contract specifications
to narrow the search space. While appealing in principle, their practical utility is severely limited by the scarcity and
incompleteness of high-quality specifications in real-world codebases.

o Heuristically inferred invariants. Other works, including [3, 21], rely on dynamic analysis (e.g., Daikon) to infer likely
program invariants. Although this reduces the need for manual specifications, it remains heuristic and incomplete:
inferred invariants capture only observed behavior and cannot guarantee the absence of faults on unexecuted paths.

o Specification-driven repair. More ambitious methods [34, 40] explore guiding repair directly from formal specifications
such as LTL. While this offers the strongest theoretical guarantees, the intractability and cost of inferring or writing
full formal specifications for complex legacy code render this approach largely impractical.

In contrast to these efforts, our approach does not assume the existence of comprehensive specifications. Instead, the
formal model G functions as a specification derivation engine. It dynamically generates precise, interaction-aware
constraints (e.g., LTL patterns for checking masking and unmasking) to guide the orchestrator’s validation component.

This enables FM techniques to be applied in a targeted, resource-efficient, and effective manner within the Py setting.

11 Conclusion

This work presents the first thorough formal study of automated program repair in the multi-fault setting, framing
it as a distinct and principled area of research within software engineering. Our analysis shows that moving beyond
single-fault repair is not an incremental extension, but a fundamental shift, bounded by undecidability, shaped by fault
interactions, and vulnerable to overfitting.

We contribute three foundational elements to advance this domain. First, a shared formal vocabulary for describing
and reasoning about interacting faults. Second, a unified model capturing the space of partial patches and intermediate
fixes. Third, a set of evaluation criteria that transcends the narrow question of “does it pass the tests?” toward semantic
correctness and long-term robustness. Together, these contributions provide principled architectural scaffolding that
must precede the construction of robust empirical tools.

Building on these theoretical foundations, we propose the orchestrated Repair framework as a blueprint for the
next generation of multi-fault repair tools. We demonstrate its computational feasibility for core dependency inference,
opening a clear agenda for future work: large-scale empirical instantiation, integration of advances in multi-fault
localization, and leveraging large language models. These heuristic techniques are promising, but their success depends
on the structured, dependency-aware framework and formal oracles established here.

We present this work not as a final implementation, but as a starting point for a broader research direction: to
transition multi-fault program repair from an ad hoc practice to a principled, system-level discipline.

Manuscript submitted to ACM

42

Omar I. Al-Bataineh

References

(1]

— =
N —

=
&

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22

[23

[24]

[25]

[26

Rui Abreu, Peter Zoeteweij, and Arjan Van Gemund. 2007. An evaluation of similarity coefficients for software fault localization. In Proceedings of
the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE). 223-232.

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2011. Simultaneous debugging of software faults. J. Syst. Softw. 84, 4 (2011), 573-586.
Omar I. Al-Bataineh. 2024. Invariant-based Program Repair. In Fundamental Approaches to Software Engineering - 27th International Conference, FASE
2024, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024,
Proceedings (Lecture Notes in Computer Science, Vol. 14573), Dirk Beyer and Ana Cavalcanti (Eds.). Springer, 255-265.

Omar I. Al Bataineh. 2025. Debugging the Undebuggable: Why Multi-Fault Programs Break Debugging and Repair Tools. In Proceedings of the 40th
IEEE/ACM International Conference on Automated Software Engineering (ASE). Seoul, South Korea. New Ideas and Emerging Results (NIER) Track.
Omar I. Al-Bataineh. 2025. Towards Interaction-Aware Validation Oracles for Multi-Fault Program Repair. In Proceedings of the 41st International
Conference on Software Maintenance and Evolution (ICSME 2025). Accepted for publication in the NIER track.

Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for Configurable Software Verification. In Computer Aided Verification. 184-190.
Dylan Callaghan and Bernd Fischer. 2023. Improving Spectrum-Based Localization of Multiple Faults by Iterative Test Suite Reduction. In Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA, René Just and Gordon Fraser (Eds.). ACM, 1445-1457.
Mark Chen, Jerry Tworek, Heewoo Jun, Qijia Yuan, Urszula Andrychowicz, Adam Mikolajczyk, Piotr Tay, Barret Zoph, Xuanyu Yuan, Alvin Shi,
et al. 2021. Evaluating Large Language Models Trained on Code. arXiv preprint arXiv:2107.03374 (2021). https://arxiv.org/abs/2107.03374

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2012. Frama-C - A Software Analysis
Perspective. In Software Engineering and Formal Methods - 10th International Conference, SEFM, Vol. 7504. 233-247.

Brian C. Dean, William B. Pressly, Brian A. Malloy, and Adam A. Whitley. 2009. A Linear Programming Approach for Automated Localization of
Multiple Faults. In 2009 IEEE/ACM International Conference on Automated Software Engineering. 640-644.

Vidroha Debroy and W. Eric Wong. 2009. Insights on Fault Interference for Programs with Multiple Bugs. In 2009 20th International Symposium on
Software Reliability Engineering. 165-174.

Nicholas DiGiuseppe and James A. Jones. 2011. Fault interaction and its repercussions. In 2011 27th IEEE International Conference on Software
Maintenance (ICSM). 3-12.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In Findings of the Association for Computational Linguistics: EMNLP 2020.
Association for Computational Linguistics, 1536-1547. doi:10.18653/v1/2020.findings-emnlp.139

Hadar Frenkel, Orna Grumberg, Bat-Chen Rothenberg, and Sarai Sheinvald. 2022. Automated Program Repair Using Formal Verification Techniques.
In Principles of Systems Design. Lecture Notes in Computer Science, Vol. 13660. Springer, 511-534.

Ruizhi Gao and W. Eric Wong. 2019. MSeer—An Advanced Technique for Locating Multiple Bugs in Parallel. IEEE Transactions on Software
Engineering 45, 3 (2019), 301-318.

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software Repair: A Survey. IEEE Transactions on Software Engineering 45, 1
(2019), 34-67.

Debolina Ghosh and Jagannath Singh. 2021. Spectrum-based multi-fault localization using Chaotic Genetic Algorithm. Inf. Softw. Technol. 133
(2021), 106512.

Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar Devanbu, Stephanie Forrest, and Westley Weimer. 2015. ManyBugs
and IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions on Software Engineering (TSE) 41, 12 (2015), 1236-1256.
doi:10.1109/TSE.2015.2427842

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix: Fixing Common C Language Errors by Deep Learning. In Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI). 1343-1349. https://www.aaai.org/ojs/index.php/AAAY/article/view/10742

Ye He and Martin Monperrus. 2024. ITER: Iterative Neural Repair for Multi-Location Patches. In Proceedings of the 46th International Conference on
Software Engineering (ICSE).

Li Huang, Bertrand Meyer, Ilgiz Mustafin, and Manuel Oriol. 2024. Execution-Free Program Repair. In Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering, FSE 2024, Porto de Galinhas, Brazil, July 15-19, 2024, Marcelo d’Amorim (Ed.).
ACM, 517-521.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A Database of Existing Faults to Enable Controlled Testing Studies for Java
Programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis (ISSTA). ACM, 437-445. doi:10.1145/2610384.2610404
Si-Mohamed Lamraoui and Shin Nakajima. 2016. A Formula-based Approach for Automatic Fault Localization of Multi-fault Programs. . Inf.
Process. 24, 1 (2016), 88—98.

Xuan-Bach D Le, David Lo, Claire Le Goues, and Willem Visser. 2018. Overfitting in semantics-based automated program repair. In Proceedings of
the 40th International Conference on Software Engineering (ICSE). ACM, 163-173.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions on Software
Engineering 38, 1 (2012), 54-72.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GenProg: A Generic Method for Automatic Software Repair. IEEE
Transactions on Software Engineering (2012), 54-72.

Manuscript submitted to ACM

https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.1109/TSE.2015.2427842
https://www.aaai.org/ojs/index.php/AAAI/article/view/10742
https://doi.org/10.1145/2610384.2610404

Foundations and Challenges of Multi-Fault Program Repair 43

[27] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12 (Nov. 2019), 56-65.

[28] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar: Revisiting Template-based Automated Program Repair. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, 43-54. doi:10.1145/3293882.3330577

Fan Long, Tushar Sharma, and Martin Rinard. 2016. Automatic Patch Generation by Learning Correct Code. In Proceedings of the 43rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 197-211. doi:10.1145/2837614.2837617

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable multiline program patch synthesis via symbolic analysis. In

Proceedings of the 38th International Conference on Software Engineering. ACM, 691-701.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis. In

IEEE/ACM 38th International Conference on Software Engineering (ICSE). 691-701.

[32] Fairuz Nawer Meem, Justin Smith, and Brittany Johnson. 2024. Exploring Experiences with Automated Program Repair in Practice. In Proceedings of
the 46th International Conference on Software Engineering (ICSE °24). 141-153.

[33] Amirfarhad Nilizadeh, Gary T. Leavens, Xuan-Bach D. Le, Corina S. Pasareanu, and David R. Cok. 2021. Exploring True Test Overfitting in Dynamic
Automated Program Repair using Formal Methods. In 2021 14th IEEE International Conference on Software Testing, Verification and Validation (ICST).
IEEE, 229-239.

[34] Amirfarhad Nilizadeh, Gary T. Leavens, Xuan-Bach D. Le, Corina S. Pasireanu, and David R. Cok. 2021. Exploring True Test Overfitting in Dynamic
Automated Program Repair using Formal Methods. In 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST). 229-240.

[35] OpenAl 2023. GPT-4 Technical Report. https://openai.com/research/gpt-4. Accessed: 2025-04-23.

[36] Pedro Orvalho, Mikoléas Janota, and Vasco M. Manquinho. 2024. cfaults: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
In Formal Methods - 26th International Symposium, FM (Lecture Notes in Computer Science, Vol. 14933). Springer, 463-481.

[37] Justyna Petke, Matias Martinez, Maria Kechagia, Aldeida Aleti, and Federica Sarro. 2024. The Patch Overfitting Problem in Automated Program
Repair: Practical Magnitude and a Baseline for Realistic Benchmarking. In Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering (FSE). 452—-456.

[38] Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Jade

Copet, et al. 2023. Code Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950 (2023). https://arxiv.org/abs/2308.12950

Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure Worse Than the Disease? Overfitting in Automated Program

Repair. In Proceedings of the 23rd ACM SIGSOFT International Symposium on the Foundations of Software Engineering, FSE 2015, Bergamo, Italy, August

30 - September 4, 2015. ACM, 729-739.

[40] Christian von Essen and Barbara Jobstmann. 2015. Program repair without regret. Formal Methods Syst. Des. 47, 1 (2015), 26-50.

[41] Sihan Xu, Ya Gao, Xiangrui Cai, Zhiyu Wang, and Hua Ji. 2021. Effective Multi-Fault Localization Based on Fault-Relevant Statistics. In 2021 IEEE

45th Annual Computers, Software, and Applications Conference (COMPSAC). 998-1003.

Sihan Xu, Ya Gao, Xiangrui Cai, Zhiyu Wang, and Hua Ji. 2021. Effective Multi-Fault Localization Based on Fault-Relevant Statistics. In 2021 IEEE

45th Annual Computers, Software, and Applications Conference (COMPSAC). 998-1003.

Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken. 2006. Statistical debugging: simultaneous identification of multiple bugs.

In Machine Learning, Proceedings of the Twenty-Third International Conference (ICML), Vol. 148. 1105-1112.

Yan Zheng, Zan Wang, Xiangyu Fan, Xiang Chen, and Zijiang Yang. 2018. Localizing multiple software faults based on evolution algorithm. . Syst.

Softw. 139 (2018), 107-123.

[29

[30

[31

[39

[42

[43

[44

Manuscript submitted to ACM

https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/2837614.2837617
https://openai.com/research/gpt-4
https://arxiv.org/abs/2308.12950

	Abstract
	1 Introduction
	1.1 Motivation for Multi-Fault APR
	1.2 Why Multi-Fault Program Repair Remains Understudied
	1.3 Foundational Perspective
	1.4 Novelty and Scope
	1.5 Contributions

	2 Background and Terminology
	2.1 The Traditional APR Problem
	2.2 A Formal Definition of a Program Fault
	2.3 Distinguishing Multi-Location and Multi-Fault Repair
	2.4 Multi-Fault Programs
	2.5 Fault Interactions
	2.6 Why GI Matters: Orchestration vs. Heuristics
	2.7 The Multi-Fault APR Problem

	3 Why Multi-Fault APR is More Challenging than Single-Fault APR
	3.1 Fault Interaction and Entanglement
	3.2 A Formal Perspective on Overfitting and Its Complication in Multi-Fault Repair
	3.3 Noisy and Misleading Fault Localization
	3.4 The Multi-Fault Oracle Problem
	3.5 Benchmarking Gaps and Evaluation Challenges in Multi-Fault Repair
	3.6 Patch Interference and Dependency
	3.7 Undefined Stopping Conditions

	4 The Role of Large Language Models: A Synthesis Engine Within a Principled Framework
	4.1 Why LLMs Alone Struggle with Multi-Fault Repair
	4.2 LLMs as a Component, Not a Complete Solution

	5 Formal Model of Fault Interactions
	5.1 Definitions and Setup
	5.2 Fault Interaction Types
	5.3 The Utility of Formal Fault Interaction Modeling

	6 Formalizing Multi-Fault Patch Generation and Validation
	6.1 Patches and Composition Semantics
	6.2 The Multi-Fault Repair Process and Validation Oracle
	6.3 A High-Level Procedure for Orchestrated Repair of Multi-fault Programs
	6.4 Computational Feasibility and Design Rigor
	6.5 Theoretical Properties and Open Challenges

	7 Principles for Evaluating Multi-Fault APR
	7.1 Evaluation Setting and Formal Notation
	7.2 Proposed Multi-Dimensional Metrics

	8 Demonstration: GI-Guided APR Orchestration
	8.1 The Multi-Fault Program and Interaction Landscape
	8.2 Contrasting Heuristic and Orchestrated Repair
	8.3 Formalizing Patch Validation with Suboracles

	9 A Forward-Looking Research Agenda: The Collaborative Orchestrator Paradigm
	9.1 The Collaborative Orchestrator Architecture
	9.2 Inferring and Characterizing the Fault Interaction graph GI
	9.3 Orchestrating Interaction-Aware Synthesis
	9.4 Multi-Modal Validation Against Fundamental Limits
	9.5 System Dynamics and Implementation Tenets
	9.6 The Iterative Orchestration and Adaptive Control Loop

	10 Related Work
	10.1 Formal Models of Fault Interaction: The Missing Link for Repair
	10.2 Multi-Fault Localization: Providing Locations, Missing Semantics
	10.3 Conventional APR: The Failure of the Reductionist Paradigm
	10.4 LLM-Based Repair: The Necessity of Principled Orchestration
	10.5 Formal Methods in Single-Fault APR: Constraints of Specification Availability

	11 Conclusion
	References

