
Towards Interaction-Aware Validation Oracles for
Multi-Fault Program Repair

Omar I. Al-Bataineh
Gran Sasso Science Institute

L’Aquila, Italy

Abstract—We explore the oracle problem in automated repair
of multi-fault programs, focusing on validating partial patches
produced during incremental repair phases. Given a multi-fault
program P with faults f1, . . . , fn and a test suite T triggering
these faults, the goal is to design validation oracles O(1), . . . ,O(n)

for intermediate patches pt1, . . . , ptn that address individual faults.
Validating partial patches raises two major issues. First, such

patches are typically generated incrementally by APR tools and
may address only a subset of the program’s faults, leaving others
unresolved. As a result, they often fail to produce correct outputs
when evaluated in isolation. Second, validation must account for
interactions with remaining faults to avoid rejecting valid fixes.

To address these issues, we outline a validation framework that
blends the strengths of output-based, halting, and assertion-based
oracles, some of which are informed by bug reports. The framework
provides a modular approach to assess both partial and composite
patches in programs with multiple defects by integrating formal
reasoning and modeling the interactions of faults.

This conceptual framework lays the groundwork for more fault-
aware and interaction-sensitive repair techniques and moves us
toward a deeper, more practical understanding of how to assess
patch correctness in complex, real-world multi-fault scenarios.

I. INTRODUCTION

Automated program repair (APR) has made significant ad-
vancements in recent years [1], [2], but most efforts still
concentrate on addressing one fault at a time. In practice,
however, real-world software often suffers from multiple faults
that interact with one another in unexpected ways [3], [4]. These
multi-fault situations present their own unique challenges—ones
that today’s program repair tools are not yet prepared to manage.
The oracle challenge: A key open problem in multi-fault
APR is designing effective validation oracles [5], [6]. Traditional
oracles assume complete correctness after a patch is applied. In
contrast, for partial patches in multi-fault contexts, correctness
must be assessed under uncertainty: patches may not fully restore
expected outputs and must be validated in the presence of
unresolved faults. Furthermore, partial patches may interfere with
earlier fixes, necessitating multi-step validation. This highlights
the need for modular and interaction-aware validation strategies.
Contribution: We present a formal validation model for multi-
fault programs with interacting faults. The model is guided by
an interaction relation I, which captures how faults influence
one another and enabling modular validation of partial patches.
Each partial patch pti is checked using an assertion-based oracle
Oi, ensuring that fault fi is addressed without disrupting prior
fixes. For full-patch validation, we combine a halting oracle
Ohalt to ensure termination and an output-based oracle Ooutput to
assess correctness. Our approach tackles the oracle problem by
enabling modular reasoning and facilitating early detection of
overfitting. To our knowledge, this is the first patch validation

framework to integrate multiple oracle types for both subpatch
and full-patch assessment in multi-fault settings.

II. PROBLEM STATEMENT

APR has advanced significantly in recent years, yet a core
question remains unresolved: how can we determine with confi-
dence whether a generated patch is correct? This longstanding
challenge, known as the oracle problem, takes on new urgency
as we move beyond the dominant simplifying assumption of
single-fault programs and tackle the more realistic and far more
common case of multi-fault scenarios in real-world software.

Most APR tools, whether traditional or machine learning (ML)-
based, rely on test suites as their primary oracle. In principle, a
patch that passes all tests in a validation suite is deemed valid.
However, this assumption often breaks when faults interact,
yielding misleading test outcomes. One fault may mask another,
causing false positives, while others produce failures that surface
only when jointly active. These scenarios highlight the limits of
test-based validation and the need for fault-aware evaluation.

As a result of such misleading test outcomes, patches generated
for multi-fault programs by standard APR approaches are prone
to overfitting — addressing symptoms rather than root causes.
Consequently, these approaches may introduce new regressions
or leave existing faults unresolved. These fundamental challenges
raise several pressing questions.

• Interaction-awareness: How should the nature of fault
interactions influence our patch validation strategy?

• Oracle source: What sources of information (beyond test
outcomes) can we rely on to act as trustworthy validation
oracles in the context of multi-fault programs?

• Scalability: How can we ensure that validation techniques
remain effective as multi-fault program complexity grows?

We argue that addressing the oracle problem for multi-fault
programs requires more than incremental extensions: it demands
a fundamental redefinition of patch correctness under fault
interactions, laying the groundwork for validation-aware repair.

III. PATCH VALIDATION MODEL FOR MULTI-FAULT REPAIR

This section introduces a formal patch validation model for
reasoning about patch validation in multi-fault programs. Our
model characterizes the semantics of faults, patches, interactions,
and oracles to support modular and scalable validation.

A. Multi-Fault Programs and Test Suites

Let P be a faulty program containing co-occurring faults —
that is, faults that manifest within a single execution — denoted
by F = {f1, f2, . . . , fn}, where each fi represents a deviation
from the intended behavior. Let T = {t1, t2, . . . , tm} be a test



suite that exposes faults in F . Each test t ∈ T returns a verdict
in {pass, fail}, depending on the observable behavior of P in
the presence of the faults and their interactions.

B. Fault Interaction Model

In multi-fault programs, faults can interact in non-additive
ways that distort behavior and complicate both debugging and
repair. We model these interactions as a labeled relation:

I ⊆ F ×F ×R, where R = {mask, synergy, indep, cascade}

Here, F denotes the set of faults, and each triple (fi, fj , r)
indicates that fault fi influences fault fj via a directed interaction
of type r ∈ R. We visualize this as a labeled edge fi

r−→ fj ,
capturing the flow of influence. For each interaction type r, we
define a corresponding subrelation:

Ir = {(fi, fj) | (fi, fj , r) ∈ I}

We consider the following canonical interaction types:
• Masking: Fault fi suppresses or obscures the manifestation

of fault fj , rendering it unobservable when both are active.
• Synergy: Faults fi and fj jointly produce a failure not

triggered by either in isolation.
• Independence: Faults fi and fj affect disjoint parts of the

system and exhibit no observable interaction.
• Cascading: Fault fi enables or amplifies the manifestation

of fault fj , increasing its visibility or severity.
These interactions can obscure failure signals, mislead local-

ization efforts, and compromise patch validation. Modeling the
interaction relation I and its subrelations is thus essential for
reasoning about correctness and behavior in multi-fault scenarios.

C. Patches and Composition Semantics

Let patch = {pt1, pt2, . . . , ptn} be a set of candidate
subpatches, where each pti is synthesized to target fault fi.
Subpatches can be composed using a binary operator ⊕ that
merges two subpatches into a single patch1 :

patchcomposite = pt1 ⊕ pt2 ⊕ · · · ⊕ ptn.

The semantics of ⊕ depend on patch representations (e.g.,
AST rewrites, instruction-level edits) and govern the preservation
or interference of earlier fixes. Fault interactions influence the
success of both individual and composed patches.

D. Test and Validation Oracles

To validate patches, we often rely on an available test oracle

OT : T × P → {pass, fail}

which observes the behavior of program P on test input t ∈ T .
While widely used, such oracles are not sufficient in multi-fault
contexts, where passing tests may mask unresolved faults. We
therefore define a higher-level patch validation oracle:

OV : T × patch → {valid, invalid}

which assesses whether applying a patch (partial or full) satisfies
the intended specification, potentially inferred from test behavior,
formal contracts, or semantic models.

1Even when subpatches are generated incrementally, e.g., following an
interaction-aware order, a final composition step is needed to integrate fixes for
independent faults, some of which may be synthesized in parallel, and to check
for emergent interactions not observable during individual validation.

E. Validation in Progressive Repair

Multi-fault repair is often conducted incrementally. A repair
system R proceeds in phases, generating and validating sub-
patches pti, each intended to address a specific fault fi ∈ F .
However, validating a subpatch in the presence of other unad-
dressed faults is nontrivial, due to potential fault interactions
and the incomplete correctness of intermediate program states.

To ensure sound validation during progressive repair, we define
a formal notion of valid partial patch grounded in fault-aware
semantics. We assume that the repair process respects a partial
order ≺I over F , induced by I, where fj ≺I fi implies that
fj should be addressed before fi to avoid semantic interference.

Definition 1: (Valid partial patch under interaction-
aware ordering). Let ≺I be a partial order over faults
F = {f1, . . . , fn} induced by the relation I. A subpatch pti is
deemed valid for fixing fault fi in a multi-fault program P if:

1) It eliminates the faulty behavior directly attributed to fi,
2) It does not adversely interfere with any previously validated

subpatch ptj for faults fj such that fj ≺I fi.
3) It preserves the program state in a way that does not hinder

the detection or repair of any fault fk such that fi ≺I fk.
This definition ensures that each repair step contributes to the

overall goal without regressing earlier fixes or compromising
future ones. The interaction-aware ordering ≺I guarantees that
fault interdependencies, such as masking, synergy, and cascading,
are respected in both validation and repair sequencing. Notably,
a valid partial patch does not need to fix all failing tests, as some
may stem from remaining faults, but it must avoid behaviors
that obscure or disrupt the validation of later subpatches.

F. The Oracle Tuple Problem

A core challenge in multi-fault repair is designing validation
oracles for partial patches that operate in the presence of complex
fault interactions. Unlike single-fault repair, multi-fault scenarios
demand a modular yet flexible validation approach.

Definition 2 (Oracle tuple for multi-fault validation): Let
OV = ⟨O(1)

V , . . . ,O(m)
V ⟩ be a tuple of validation oracles applied

to subpatches pt1, . . . , ptn, with m ≥ 1. Each oracle O(i)
V may

target one or more faults and associated subpatches, possibly
overlapping with others. We refer to OV as an oracle tuple for
program P under interaction model I.

This formulation acknowledges that oracle-to-subpatch map-
pings are not strictly one-to-one. Some faults may require
multiple oracles due to complexity or limited observability, while
others may share a common oracle. The interaction model I is
essential for designing and interpreting these oracles.

G. The Patch Validation Problem

Building on the formal validation model, we now define the
patch validation problem for multi-fault programs:

Given a faulty program P with a set of faults F =
{f1, . . . , fn}, a test suite T , a set of candidate subpatches
patch = {pt1, . . . , ptn}, a fault interaction model I ⊆ F ×
F ×R, and a corresponding partial order ≺I over F , the goal
is to design a validation strategy V for P that can:

1) Assess whether each subpatch pti constitutes a valid
intermediate fix when executed in the presence of other
unresolved faults and their interactions;



2) Determine whether the full composition of subpatches,
denoted patchcomposite, yields a correct repair of P .

This formulation captures the central challenge of validating
patches in multi-fault settings: the validity of a fix may depend
on the behavioral context of other unresolved faults.

H. Research Challenges

The presented formulation raises several open challenges:
• Partial validation: How to validate the subpatch pti in

isolation or in context, given interactions in I?
• Oracle construction: How can we go beyond test-based

oracles to build lightweight yet fault-aware validators?
• Validation efficiency: How many oracles need to be eval-

uated when applying a new subpatch pti(P ), and which
ones? Can we leverage the interaction model I to avoid
redundant validations and reduce computational overhead?

• Scalability: How to scale the validation process for large
programs with many faults and vast patch spaces?

Efficiency and scalability in patch validation hinge on informed
choices about which oracles to invoke and when. The number and
selection of oracles for a subpatch pti(P ) should be guided by
the fault interaction model I , not chosen arbitrarily. For instance,
if pti targets fault fi and I indicates interaction with another fault
fj , then oracles for both should be used to catch potential side
effects. If fi is independent, validating it in isolation may suffice.
This demonstrates how incorporating I can reduce redundant
testing and improve scalability in multi-fault repair.

IV. INSTANTIATING THE PATCH VALIDATION MODEL

To operationalize our patch validation model, we introduce
a workflow that integrates fault estimation, interaction analysis,
and modular validation. As shown in Fig. 1, the process begins
with a faulty program and its test suite, followed by estimating
the fault set F , analyzing interactions I, and deriving a partial
order ≺I . These guide the synthesis of sub-oracles that drive
iterative subpatch generation. The model supports refinement,
allowing updates as new interactions are discovered. The final
composite patch is validated using both output-based and halting
oracles. Each phase is detailed in the remainder of this section.

A. Identifying the Fault Set F

Traditional fault localization techniques are typically designed
for single-fault scenarios, where a single root cause is assumed
to underlie observed failures. In multi-fault programs, however,
multiple faults can obscure, amplify, or distort fault signals,
making accurate localization significantly more difficult.

To address this, we propose a hybrid approach that combines
AI-based models with multi-fault localization (MFL) techniques
[7], [8], [9], [10]. AI-guided components, such as learning-
based or statistical models trained on historical defect data, can
rank program elements according to fault-proneness patterns.
These initial candidates are then refined using dynamic MFL
analyses like spectrum-based localization or dynamic slicing,
which correlate runtime behavior with test failures.

This combined strategy yields a more accurate approximation
of the fault set F = {f1, f2, ..., fn}, which underpins subsequent
modular patching and validation. Existing MFL tools, such as
CFAULTS [11] and FLITSR [8], can be integrated to further
enhance candidate identification in complex scenarios. Emerging

Input: Program P
and Test Suite T

Estimate fault set F ,
relation I, and ≺I

Synthesize Sub-oracles Osub

Run iterative APR on P
using Osub to generate

pt1, . . . , ptn in
accordance with ≺I

Compose and validate using
Ohalt and Ooutput

Return patchcomposite

Static + Dynamic + AI Analysis

Fault-aware synthesis of Osub

Each Oi ∈ Osub targets a sub-fault

Generate and compose subpatches

Valid =⇒ Final patch

In
va

lid
=
⇒

R
efi

ne
es

tim
at

io
n

or
su

bp
at

ch
sy

nt
he

si
s

Fig. 1. Modular patch synthesis and validation workflow. Subpatches are
generated iteratively based on ≺I and validated in composition. Dashed arrow
denotes refinement upon validation failure.

AI assistants, such as ChatGPT and Gemini, have also shown
early promise in locating faults per session [12], [13], offering
complementary support to programmatic MFL techniques.

B. Estimating the Interaction Relation I
To make our patch validation model practical, we must

estimate the interaction relation I, which describes how faults
in a multi-fault program influence one another. This relation
governs how subpatches should be validated and composed. We
outline several promising approaches to estimate the relation I.
Dynamic estimation via subpatch experimentation: A
lightweight and practical method to approximate I is through
dynamic test executions guided by subpatch manipulation. By
selectively applying or disabling subpatches and observing test
outcomes, we can infer how faults interact. For instance:

• Masking: Applying patch pti alters test failure behavior,
revealing that the fixed fault concealed the effects of another
fault, which may have been hidden by crashes or hangs.

• Synergy: Only the combination of patches pti and ptj causes
a failing test to pass, though neither works alone.

• Independence: Patches pti and ptj can be applied in
isolation without mutual influence on test outcomes.

• Cascading: Applying patch pti unexpectedly causes a test
to fail by exposing faulty behavior elsewhere, indicating a
downstream dependency between faults.

Static and semantic augmentation: Static code analysis
(e.g., control/data flow, aliasing, and dependence graphs) can
complement dynamic observations by identifying syntactic or



semantic proximity between faults. For example, faults in the
same control structure or sharing variables may have a higher
likelihood of interaction. Semantic fault types, such as memory
violations or hangs, can also be used to predict masking behavior
(e.g., a crash will likely suppress output anomalies).
Graph-based interaction modeling: We can model estimated
interactions as a labeled fault graph, where nodes represent faults
and edges indicate observed or inferred interactions. These edges
can be labeled with interaction types and optionally weighted
by confidence or severity (e.g., degree of masking).

C. Fault Types and Validator Design

The design of sub-oracles in a multi-fault context must account
not only for the behavior of individual faults but also for their
interactions, as formalized by the relation I. We classify faults
into four categories, each requiring a tailored oracle construction:

• Disruptive faults (e.g., crashes, hangs) cause coarse-
grained, non-functional failures. These require oracles that
monitor liveness, exceptions, or runtime signals. For each
disruptive fault fi, we create an oracle Oi using runtime
monitors and failure signatures from logs or bug reports.
Oracle count: one per fault. Validation: single-stage.

• Independent faults exhibit no observable interaction with
others (i.e., they do not participate in any tuple in I). Their
oracles rely on output-based comparisons using test cases.
Oracle count: one per fault. Validation: parallelizable.

• Synergistic faults show non-decomposable behavior: their
impact arises when multiple faults co-occur. If (fi, fj) ∈
Isynergy, we construct a joint oracle Oi,j based on failure-
inducing tests specific to their combination. Oracle count:
one per synergistic fault group. Validation: joint.

• Dependent faults (masked or cascading) involve suppres-
sion or amplification—i.e., (fi, fj) ∈ Imask∪Icascade. Valida-
tion is staged: dominant faults handled first, with secondary
oracles activated as effects emerge. For dependency faults,
we define an oracle dependency graph G = (F,E), where
E = Imask ∪ Icascade guides validation order. Oracle count:
layered. Validation: sequential and interaction-aware.

This structured oracle design aligns validation strategies with
the behavioral complexity of real-world multi-fault programs.
By tailoring sub-oracles to fault types and their interactions,
we improve fault isolation, reduce false positives, and enable
more robust patch validation. Ultimately, this modular framework
supports effective integration into APR pipelines.

D. Validating the Full Patch: Composite Oracles for Soundness

While sub-oracles can detect early signs of invalid partial
repairs, they are insufficient to guarantee the correctness of a
complete patch that integrates multiple subpatches. To ensure
the reliability of the final full patch, we advocate a composite
validation strategy employing two complementary oracles:

• Output-based oracle Ooutput: This oracle compares the
observable outputs of the patched program against expected
results. It captures functional correctness and is suitable for
detecting incorrect behavior in non-disruptive faults.

• Halting oracle Ohalt: This oracle checks that the final pro-
gram terminates under all inputs, detecting crash- or hang-
inducing behaviors. Ohalt can be checked using termination

provers (e.g., AProVE [14], T2 [15]), which may return
terminating (TR), non-terminating (NT), or unknown (UN).

Validating the final full patch with both oracles strengthens
the overall assessment by covering complementary aspects of
correctness: Ohalt ensures liveness and safety, while Ooutput
checks for accuracy in the program’s observable behavior.
Refinement upon validation failure: In multi-fault repair, it is
possible that all subpatches pass their respective sub-oracles, yet
the final full patch fails global validation. Such contradictions
often indicate hidden fault interactions, flawed assumptions in the
interaction model, or overfitting in subpatches. A refinement loop
should be triggered in these cases, which may involve revisiting
the fault interaction assumptions, adjusting sub-oracle scopes, or
resynthesizing subpatches with updated constraints. Supporting
such iterative refinement is essential to ensure correctness in the
presence of complex or synergistic fault behaviors.
Bug reports and oracle design: In practice, bug reports often
include stack traces, reproduction steps, and descriptions of
faulty behavior [16], [17], [18]. These can be leveraged to derive
lightweight assertion-based oracles, especially for disruptive
faults. Such oracles are valuable not only for subpatch validation
but also as auxiliary signals during full-patch evaluation.

Table I summarizes how validation strategies differ by fault
type, interaction pattern, and oracle source. It contrasts local and
global validation goals, identifies when refinement is needed,
and maps each strategy to practical oracle derivation methods.

V. DEMONSTRATING EXAMPLE

To demonstrate the benefits of our validation model, we present
a simplified yet realistic example based on sensor logic. It
includes three faults capturing common interaction patterns:
a disruptive crash, a semantic miscalculation, and an over-
aggressive smoothing. These faults exhibit masking and synergy,
two interaction types that challenge traditional patch validation.

1 f l o a t p r o c e s s r e a d i n g ( i n t s e n s o r v a l ) {
2 i n t o f f s e t = s e n s o r v a l % 10 − 5 ;
3 / / f 1 : Risky z e r o d i v i s o r
4 i n t n o r m a l i z e d = s e n s o r v a l / o f f s e t ;
5 / / f 1 : Div −by− z e r o i f o f f s e t == 0
6 f l o a t temp = n o r m a l i z e d * 1 . 5 − 3 2 ;
7 / / f 2 : Wrong c o n v e r s i o n f o r m u l a
8 i f ( temp < 5 0 . 0 )
9 temp = round ( temp / 1 0 . 0 ) * 1 0 . 0 ;

10 / / f 3 : E x c e s s i v e r o u n d i n g
11 r e t u r n temp ;
12 }

Listing 1. Three interacting faults in sensor processing

A. Fault Interaction Matrix

To illustrate the fault interactions in our example (Listing 1),
we present the fault interaction matrix IM P , a concise tabular
view derived directly from the interaction relation I. Each
entry at row fi, column fj corresponds to a labeled interaction
(fi, fj , r) ∈ I, capturing how fault fi influences fault fj . This
matrix encodes directed fault interactions and may be asymmetric,
reflecting potentially different effects in opposite directions.

IM P =

f1 f2 f3

f1 – mask mask
f2 indep – synergy
f3 indep synergy –



TABLE I
VALIDATION STRATEGIES ACROSS FAULT TYPES, PATCH LEVELS, AND ORACLE SOURCES.

Fault Type Subpatch Strategy Full-Patch Strategy Validation Purpose Oracle Source(s)
Disruptive Halting checks (timeouts, crash

monitors)
Combined Ohalt +Ooutput Ensure termination and functional

correctness
Termination provers, test out-
puts, crash reports

Independent One oracle per fault (assertion
or output-based)

Ooutput Validate fault-local fixes and iso-
late behavior

User-provided test suite, in-
ferred postconditions

Synergistic Compound sub-oracle over joint
fault group

Ooutput +Ohalt Detect combined behavior or non-
decomposable fixes

Test outcomes, user asser-
tions, joint failure analysis

Masked Oracle refinement guided by
masking; dynamic toggling

Ooutput Reveal suppressed behavior due
to other faults

Test logs, bug traces, patch
experiments

Cascading Oracle refinement staged with
patch order

Ordered composite validation
using both oracles

Reveal dependent or emergent
faults post-fix

Patch ordering traces, dy-
namic monitors

Validation Failure — Refinement loop on
Ohalt/Ooutput failure

Diagnose fault interaction misfit
or subpatch overfitting

Inferred from failed valida-
tion outcomes

The diagonal entries are marked as –, indicating that faults
are not considered to interact with themselves.

Fault f1 is disruptive and exhibits masking behavior: it halts
execution prematurely, suppressing the manifestations of f2
and f3. In contrast, f2 and f3 are synergistic: each causes
only minor deviations individually, but together they lead to
significant output errors that exceed acceptable thresholds.

B. Validation Analysis
We assume the availability of: (i) a failing test suite T , (ii)

a bug report with runtime error information, (iii) a termination
prover TP , and (iv) tools for fault localization and assertion
inference (e.g., symbolic analyzers or AI-based assistants). Given
this setup, we walk through the process of fault interaction
discovery and oracle-guided patch validation.

1) Detecting the disruptive fault f1: Fault f1 triggers a
division-by-zero crash when offset == 0, which occurs
for inputs like 85, 95, or 105. This crash is easily detectable
via dynamic analysis or lightweight static checks. Even
general-purpose tools (e.g., ChatGPT) can localize the fault
based on runtime output like ”Floating point exception at
line 3.” Since the crash halts execution, it also masks faults
f2 and f3. Recognizing this masking behavior is essential:
validating a fix for f1 must not prematurely reject correct
patches just because f2 or f3 remain unpatched.

2) Unmasking faults f2 and f3: After f1 is fixed, program
normal execution resumes, and the remaining faults manifest.
Fault f2 applies an incorrect conversion from sensor units
to temperature, while fault f3 rounds aggressively, reducing
precision. Both faults produce observable deviations only
when the program runs to completion.

3) Suboracle validation: Based on the discovered fault set
F = {f1, f2, f3} and their interaction matrix IMP , we
construct suboracles tailored to each fault’s characteristics:
• For f1: we use two complementary oracles:

– Ohalt: A halting oracle ensures the program no longer
crashes. It can be validated using termination provers
like AProVE or Ultimate Automizer.

– Oassert: An assertion oracle is derived from runtime
symptoms and bug reports. For instance, the report
may include “Floating point exception at line 3”,
suggesting an assertion like assert(offset !=
0);. We can use tools like CPAChecker [19] or
Frama-C [20] to check the validity of the assertion.

• For f2 and f3: since they produce incorrect but termi-
nating output, we validate patches using:
– Ooutput: This is a traditional output oracle derived from

the user-provided test suite T , optionally enhanced
by test amplification or fuzzing techniques to better
capture semantic deviations.

Each suboracle aligns with the fault’s role in the interaction
matrix: crash faults require halting/assertion oracles; syn-
ergistic semantic faults demand nuanced output oracles.
Crucially, these suboracles allow us to validate partial
repairs without false rejection due to masked behavior.

4) Final patch validation: Once all faults have been repaired
and their respective subpatches validated, we perform a final,
integrated validation using the combination Ohalt +Ooutput.
This ensures the patched program both terminates correctly
and produces expected results across the full test suite.

This example illustrates how our oracle-aware, interaction-
informed validation model enables practical, modular assessment
of multi-fault repairs. By tailoring suboracle construction to fault
interaction types, we reduce both underfitting and overfitting
risks, improving validation precision and boosting developer
confidence in automated patch correctness.

VI. CONCLUSION

Automated repair of multi-fault programs with co-occurring
bugs poses a growing challenge in software engineering. This
paper tackles a key yet underexplored issue: the oracle problem
in multi-fault repair, focusing on constructing oracles to validate
candidate patches addressing several faults simultaneously.

We propose an oracle-aware validation model that integrates
three oracle types: output-based, halting, and assertion-based. The
output and halting oracles jointly validate the final composite
patch for correctness and termination, while assertion-based
oracles guide validation of subpatches targeting individual faults.

Current APR validation strategies are fundamentally unreliable
in multi-fault scenarios: dependence on test suites weakens and
misleads patch validation due to fault interactions. Our model
addresses this issue by examining the interactions among faults,
fault characteristics, and validation strategies, thereby reducing
overfitting, fault masking, and emergent behaviors.

We hope this work inspires deeper exploration of oracle design
in repair workflows and promotes the development of more robust
repair tools for real-world multi-fault programs.



REFERENCES

[1] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, Nov.
2019.

[2] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1, pp.
34–67, 2019.

[3] O. I. Al-Bataineh, “Automated repair of multi-fault programs: Obstacles,
approaches, and prospects,” in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2024, pp. 2215–2219.

[4] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE,
A. Bertolino, G. Canfora, and S. G. Elbaum, Eds. IEEE Computer
Society, 2015, pp. 913–923.

[5] C. Geethal, M. Böhme, and V.-T. Pham, “Human-in-the-loop automatic
program repair,” IEEE Transactions on Software Engineering, vol. 49,
no. 10, pp. 4526–4549, 2023.

[6] O. I. Al-Bataineh, “Towards developing effective oracles to reduce patch
overfitting in automated program repair,” in IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2025.

[7] S. Xu, Y. Gao, X. Cai, Z. Wang, and H. Ji, “Effective multi-fault localization
based on fault-relevant statistics,” in 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC), 2021, pp. 998–1003.

[8] D. Callaghan and B. Fischer, “Improving spectrum-based localization of
multiple faults by iterative test suite reduction,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA, R. Just and G. Fraser, Eds. ACM, 2023, pp. 1445–1457.

[9] D. Ghosh and J. Singh, “Spectrum-based multi-fault localization using
chaotic genetic algorithm,” Inf. Softw. Technol., vol. 133, p. 106512, 2021.

[10] S. Lamraoui and S. Nakajima, “A formula-based approach for automatic
fault localization of multi-fault programs,” J. Inf. Process., vol. 24, no. 1,
pp. 88–98, 2016.

[11] P. Orvalho, M. Janota, and V. M. Manquinho, “cfaults: Model-based
diagnosis for fault localization in C with multiple test cases,” in Formal
Methods - 26th International Symposium, FM, ser. Lecture Notes in
Computer Science, vol. 14933. Springer, 2024, pp. 463–481.

[12] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engineering:
A systematic literature review,” ACM Transactions on Software Engineering
and Methodology, vol. 33, no. 8, pp. 1–47, 2024.

[13] Z. Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, “Automated
repair of programs from large language models,” in Proceedings of the 45th
International Conference on Software Engineering (ICSE), 2023, pp. 1469–
1481. [Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00128

[14] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann,
“Proving Termination of Programs Automatically with AProVE,” in
International Joint Conference on Automated Reasoning (IJCAR), Cham,
2014, pp. 184–191.

[15] H.-Y. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter,
“Synthesising Interprocedural Bit-Precise Termination Proofs (T),” in
International Conference on Automated Software Engineering (ASE), 2015,
pp. 53–64.

[16] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in 28th
International Conference on Software Engineering (ICSE), L. J. Osterweil,
H. D. Rombach, and M. L. Soffa, Eds. ACM, 2006, pp. 361–370.

[17] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein, and
Y. L. Traon, “ifixr: bug report driven program repair,” in Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE, 2019, pp. 314–325.

[18] M. Motwani and Y. Brun, “Better automatic program repair by using
bug reports and tests together,” in Proceedings of the 45th International
Conference on Software Engineering (ICSE). IEEE, 2023. [Online].
Available: https://doi.org/10.1109/ICSE48619.2023.00109

[19] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable
software verification,” in Computer Aided Verification, 2011, pp. 184–190.

[20] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c - A software analysis perspective,” in Software
Engineering and Formal Methods - 10th International Conference, SEFM,
vol. 7504, 2012, pp. 233–247.


